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Cass, Koopmans, Ramsey

“Cass-Koopmans-Ramsey model” ≡ model derived from the
contributions of Ramsey (1928), Cass (1965) and Koopmans (1965).

Franck P. Ramsey: English mathematician, logician and economist, born in
Cambridge in 1903, deceased in London in 1930.

David Cass: Americain economist, born in 1937 in Honolulu, deceased in
2008 in Philadelphia, professor the University of Pennsylvania since 1974.

Tjalling C. Koopmans: Dutch and American economist, born in 1910 in
’s-Graveland, deceased in 1985 in New Haven, professor at Yale University
since 1955, co-laureate (with Leonid V. Kantorovich) of the Sveriges
Riksbank’s prize in economic sciences in memory of Alfred Nobel in 1975
“for their contributions to the theory of optimum allocation of resources”.

Olivier Loisel, Ensae Macroeconomics 1 (2/7): The Cass-Koopmans-Ramsey model Sept.-Dec. 2024 2 / 91



Introduction Equilibrium conditions Equilibrium determination

Motivation

The Cass-Koopmans-Ramsey model endogenizes the saving rate of the
Solow-Swan model.

This endogenization leads to a more refined positive and normative analysis,
in particular of the effect of economic policies.

Does this change the main predictions of the Solow-Swan model about

the determinants of long-term growth,
conditional convergence,
the possibility of dynamic inefficiency?

No, no, and yes.
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General overview of the model I *

Firms rent capital and employ labor to produce goods.

Households own capital and supply labor.

The goods produced by firms are used for households’ consumption and
investment in new capital.

The saving rate is endogenous, optimally chosen by households.

Capital evolves over time due to investment and capital depreciation.

(In the pages whose title is followed by an asterisk,

in blue: changes from Chapter 1.)
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General overview of the model II *

 

 

  

At exogenous 

st endogenous 

Capital Kt 

Output Yi,t = F(Ki,t,AtLi,t) 

for each firm i 

Savings = Investment It = stYt Consumption Ct = (1-st)Yt 

Labor Lt 

Depreciation δKt 
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Good, private agents, markets

Only one type of good, used for

consumption,
investment.

Two types of private agents:

households,
firms.

Four markets:

goods markets,
labor market,
capital market,
loans market.
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Origin of supply and demand on each market

Goods market:

supply from firms,
demand from households.

Labor market:

supply from households,
demand from firms.

Capital market:

supply from households,
demand from firms.

Loans market:

supply from households,
demand from households.
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Perfectly competitive markets

These four markets are assumed to be perfectly competitive, that is to say
that they satisfy the following five conditions:

1 market atomicity,
2 product homogeneity,
3 market transparency,
4 free entry and exit,
5 free movement of inputs.

The atomicity condition says that the supply or demand of each agent is
negligible compared to total supply or demand, and implies that no single
agent can influence prices.

In Chapter 5, we will consider markets that are imperfectly competitive as
they do not satisfy the atomicity condition.
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Exogenous variables *

Neither flows nor stocks:

continuous time, indexed by t,
price of goods ≡ numéraire = 1,
(large) number of firms I ,
saving rate s, with 0 < s < 1.

Flow:

labor supply = 1 per person.

Stocks:

aggregate initial capital K0 > 0,
population Lt = L0e

nt , where L0 > 0 and n ≥ 0,
productivity parameter At = A0e

gt , where A0 > 0 and g ≥ 0.
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Endogenous variables *

Prices:

real usage cost of capital zt ,
real wage wt ,
real interest rate rt .

Quantities − flows:

output Yi ,t of firm i ,
labor demand Ni ,t of firm i ,

aggregate output Yt≡ ∑I
i=1 Yi ,t ,

aggregate labor demand Nt ≡ ∑I
i=1 Ni ,t ,

aggregate consumption Ct .

Quantities − stocks:

capital Ki ,t of firm i (except at t = 0),

aggregate capital Kt≡ ∑I
i=1 Ki ,t (except at t = 0),

real aggregate amount of assets Bt .
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Partial and general equilibria

Partial equilibrium ≡ situation in which supply equals demand on a single
market.

General equilibrium ≡ situation in which supply equals demand on all
markets.
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General-equilibrium conditions

Each private agent solves their optimization problem: as all markets are
perfectly competitive,

at each time t ≥ 0, each firm i chooses (Yi ,t ,Ki ,t ,Ni ,t), as a function
of the prices (wt , zt) that they consider as given, in order to maximize
their instantaneous profit subject to constraints,

at time 0, the representative household chooses (Ct
Lt
, Bt
Lt
)t≥0, as a

function of the prices (wt , zt , rt)t≥0 that they consider as given, in
order to maximize their intertemporal utility (under perfect
expectations) subject to constraints.

Prices are such that each market is cleared at each time t ≥ 0:

wt clears the labor market: Nt = Lt ,

zt clears the capital market,

rt clears the loan market.
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Reminder about the actualized value of a future variable

We consider a flow or a stock of goods, denoted by xt for any time t, and
two times t1 and t2 such that t1 < t2.

The actualized value at time t1 of xt2 is defined as the value that xt should
take at time t1 if xt were placed on the loans market from time t1 to time t2
and took the value xt2 at time t2.

In case xt2 is an income, it is therefore the amount that can be borrowed
and consumed at t1 if the borrowing is reimbursed at t2 with this income.

If xt were placed on the loans market, then its instantaneous growth rate at
time t would be the real interest rate, denoted by rt :

·
x t
xt

≡ lim
dt→0+

xt+dt − xt
xtdt

= rt .

Integrating from t1 to t2, we get xt2 = xt1e
∫ t2
t1

rtdt .

The actualized value at time t1 of xt2 is therefore xt2e
−
∫ t2
t1

rtdt .
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Chapter outline

1 Introduction

2 Equilibrium conditions

3 Equilibrium determination

4 Equilibrium optimality

5 Environmental extensions

6 Conclusion

7 Appendix
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Equilibrium conditions

1 Introduction

2 Equilibrium conditions

Firms’ behavior
Households’ behavior
Market clearing

3 Equilibrium determination

4 Equilibrium optimality

5 Environmental extensions

6 Conclusion

7 Appendix
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Firms’ optimization problem

Output of each firm i : Yi ,t = F (Ki ,t ,AtNi ,t), where the production
function F has the same properties as in Chapter 1.

Each firm rents at each time the capital stock that they want to use, and
there is no capital adjustment cost (in particular investment is reversible).

So, at each time t, firm i chooses Ki ,t and Ni ,t in order to maximize their
instantaneous profit

F (Ki ,t ,AtNi ,t)− ztKi ,t − wtNi ,t ,

considering zt and wt as given.
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First-order conditions

Denoting by Fj the partial derivative of F with respect to its jth argument
for j ∈ {1, 2}, we get the first-order conditions

F1(Ki ,t ,AtNi ,t) = zt (marginal productivity of capital = usage cost),

AtF2(Ki ,t ,AtNi ,t) = wt (marginal productivity of labor = wage).

Using these conditions and Euler’s theorem applied to Function F
homogeneous of degree one, we get that the instantaneous profit is zero for
any Ki ,t and Ni ,t :

F (Ki ,t ,AtNi ,t)−Ki ,tF1(Ki ,t ,AtNi ,t)− AtNi ,tF2(Ki ,t ,AtNi ,t) = 0

=⇒ F (Ki ,t ,AtNi ,t)− ztKi ,t − wtNi ,t = 0.

Leonhard P. Euler: Swiss mathematician and physicist, born in 1707 in
Basel, deceased in 1783 in Saint-Petersburg.
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Households’ intertemporal utility

Infinitely-lived representative household or else dynastic lineage whose
generations are linked together by bequest and altruism (this assumption will
be relaxed in Chapter 7).

At time 0, their intertemporal utility is

U0 ≡
∫ +∞

0
e−ρt Lt

L0
u(ct)dt =

∫ +∞

0
e−(ρ−n)tu(ct)dt

where

ρ is the rate of time preference (ρ > 0),

ct ≡ Ct
Lt

is per-capita consumption,

u is the instantaneous-utility function,

if the (large) constant number of households is normalized to L0 (without
any loss in generality).
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Properties of the instantaneous-utility function

1 u: R+ → R (u can take negative values as it takes ordinal − not cardinal
− values),

2 u is strictly increasing: ∀x ∈ R+, u′(x) > 0,

3 u is strictly concave (which implies a preference for smoothing consumption
over time): ∀x ∈ R+, u′′(x) < 0,

4 u satisfies the Inada conditions: lim
x→0

u′(x) = +∞ and lim
x→+∞

u′(x) = 0.
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Strict concavity of u and consumption smoothing
 

0  ct 

u(ct) 

c + ec ‐ e  c 

u(c) 
ଵ

ଶ
u(c‐e) + ଵ

ଶ
u(c+e) 

Case 1: ct = c. Case 2: Proba[ct = c − ϵ] = Proba[ct = c + ϵ] = 1
2 with 0 < ϵ < c.

We have u(c) > 1
2u(c − ϵ) + 1

2u(c + ϵ).
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Households’ assets

Each household can hold two types of assets:

loans to other households (zero in equilibrium),
capital ownership titles.

In equilibrium, households must be indifferent between these two asset
types, so

rt ≡ real interest rate on loans to households

= real rate of return on ownership titles

(if it were a strict inequality, then all households would like to lend and none
to borrow, or vice-versa).

Bt ≡ total amount of assets in units of goods.

bt ≡ Bt
Lt

total amount of assets in units of per-capita goods.
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Households’ budget constraint I

As the representative household has access to the loans market, they can in
some sense “intertemporally transfer” their wage incomes and thus choose a
consumption path subject only to an intertemporal budget constraint of
type

actualized value at time 0 of future consumptions ≤ wealth at
time 0 + actualized value at time 0 of future wage incomes.

In aggregate terms, it is written as∫ +∞

0
Cte

−
∫ t
0 rτdτdt︸ ︷︷ ︸

what should be saved at time 0
to finance future consumption

≤ B0︸︷︷︸
wealth

at time 0

+
∫ +∞

0
Wte

−
∫ t
0 rτdτdt︸ ︷︷ ︸

what could be borrowed at time 0 and
reimbursed with future wage incomes

.

It can be rewritten, in per-capita terms, as∫ +∞

0
cte

−
∫ t
0 (rτ−n)dτdt ≤ b0 +

∫ +∞

0
wte

−
∫ t
0 (rτ−n)dτdt.
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Households’ budget constraint II

The instantaneous budget constraint of the representative household is,
in aggregate terms,

·
Bt = rtBt + wtLt − Ct .

It can be rewritten, in per-capita terms, as

·
bt = (rt − n)bt + wt − ct .

Re-arranging the terms and multiplying by e−
∫ t
0 (rτ−n)dτ, we get[ ·

bt − (rt − n) bt

]
e−

∫ t
0 (rτ−n)dτ = (wt − ct) e

−
∫ t
0 (rτ−n)dτ.

Then, integrating from 0 to T ,

bT e
−
∫ T
0 (rτ−n)dτ − b0 =

∫ T

0
(wt − ct) e

−
∫ t
0 (rτ−n)dτdt.
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Households’ budget constraint III

Going to the limit T → +∞ and re-arranging the terms, we get∫ +∞

0
cte

−
∫ t

0 (rτ−n)dτdt = b0+
∫ +∞

0
wte

−
∫ t

0 (rτ−n)dτdt− lim
T→+∞

[
bT e−

∫ T

0 (rτ−n)dτ
]
.

We thus get the intertemporal budget constraint∫ +∞

0
cte

−
∫ t
0 (rτ−n)dτdt ≤ b0 +

∫ +∞

0
wte

−
∫ t
0 (rτ−n)dτdt

if and only if lim
T→+∞

[
bT e

−
∫ T
0 (rτ−n)dτ

]
≥ 0

or, equivalently, if and only if lim
T→+∞

(
BT e

−
∫ T
0 rτdτ

)
≥ 0.
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Households’ solvency constraint

The condition

lim
T→+∞

(
BT e

−
∫ T
0 rτdτ

)
≥ 0

is households’ solvency constraint.

It imposes that the actualized value at time 0 of the total amount of assets
in the long term must be non-negative.

It implies that in the long term, total debt (−BT when BT < 0) cannot
increase at a rate higher than or equal to the interest rate (rT ).

It rules out the possibility of financial scheme in which each borrowing would
be reimbursed with a new borrowing (“Ponzi scheme”).

Carlo P.G.G.T. Ponzi: American and Italian crook, born in 1882 in Lugo,
deceased in 1949 in Rio de Janeiro.
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Households’ optimization problem

For some given (rt ,wt)t≥0 and b0,

max
(ct )t≥0,(bt )t>0

∫ +∞

0
e−(ρ−n)tu(ct)dt

subject to the constraints

1 ∀t ≥ 0, ct ≥ 0 (constraint of consumption non-negativity),

2 ∀t ≥ 0,
·
bt = (rt − n)bt + wt − ct (instantaneous budget constraint),

3 lim
t→+∞

[
bte

−
∫ t
0 (rτ−n)dτ

]
≥ 0 (solvency constraint).

This problem is difficult due to its intertemporal nature.

Parable of Robinson Crusoe and barley grains.
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General dynamic-optimization problem

This problem is a particular case (among others that we will encounter
throughout the course) of the following general problem: for a given k0 > 0,

max
(ci ,t )i∈{1,...,m},t≥0,(kt )t>0

{∫ +∞

0
U
[
(ci ,t)i∈{1,...,m}, kt , t

]
dt

}
subject to the constraints

1 ∀i ∈ {1, ...,m}, ∀t ≥ 0, ci ,t ≥ 0,

2 ∀t ≥ 0,
·
kt = G

[
(ci ,t)i∈{1,...,m}, kt , t

]
,

3 lim
T→+∞

{
kT e

−
∫ T
0

∂G
∂kt

dt
}

≥ 0 (“households’ case”) or

3 ∀t > 0, kt ≥ 0 (“planner’s case”),

where m ∈ N∗, and where Functions U and G have certain properties.
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Optimal-control theory I

Optimal-control theory enables one to decompose this (general)
intertemporal problem into instantaneous problems.

We define the Hamiltonian associated to the problem by

H [(ci ,t)i∈{1,...,m}, kt ,λt , t] ≡ U [(ci ,t)i∈{1,...,m}, kt , t]+λtG [(ci ,t)i∈{1,...,m}, kt , t] .

William R. Hamilton: Irish mathematician, physicist and astronomer, born
in 1805 in Dublin, deceased in 1865 in Dublin.

We call

kt the state variable (typically a stock),
(ci ,t)i∈{1,...,m} the control variables (typically flows),
λt the costate variable.
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Optimal-control theory II

[
(ci ,t)i∈{1,...,m},t≥0, (kt)t>0

]
is a solution to the dynamic-optimization

problem if and only if there exists (λt)t≥0 such that

1 the constraints of the dynamic-optimization problem are satisfied,

2 ∀t ≥ 0, λt ≥ 0 (non-negativity of the costate variable),

3 ∀j ∈ {1, ...,m}, ∀t ≥ 0, ∂H
∂cj ,t

= 0 (first-order conditions on the control

variables),

4 ∀t ≥ 0, ∂H
∂kt

= −
·
λt (costate equation),

5 lim
t→+∞

ktλt = 0 (transversality condition).
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Applying optimal-control theory I

We now apply optimal-control theory to households’ optimization problem.

We define the Hamiltonian associated to households’ optimization problem
by

H(ct , bt ,λt , t) ≡ e−(ρ−n)tu(ct) + λt [(rt − n) bt + wt − ct ] ,

where λt represents the utility at time 0 of one unit of savings at time t, so
that H(ct , bt ,λt , t) represents the utility at time 0 of consumption and
savings at time t.

We call

bt the state variable,
ct the control variable,
λt the costate variable.
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Applying optimal-control theory II

[(ct)t≥0, (bt)t>0] is a solution to households’ optimization problem if and
only if there exists (λt)t≥0 such that

1 ∀t ≥ 0, ∂H
∂ct

= 0 (first-order condition on the control variable),

2 ∀t ≥ 0, ∂H
∂bt

= −
·
λt (costate equation),

3 ∀t ≥ 0,
·
bt = (rt − n)bt + wt − ct (instantaneous budget constraint),

4 lim
t→+∞

btλt = 0 (transversality condition),

5 lim
t→+∞

[
bte

−
∫ t
0 (rτ−n)dτ

]
≥ 0 (solvency constraint),

6 ∀t ≥ 0, ct ≥ 0 and λt ≥ 0 (non-negativity constraints).

A brief interpretation of these optimality conditions is proposed in the
appendix (for a more detailed interpretation, see the appendix of Chapter 1
of Aghion and Howitt, 1998).
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Existence and uniqueness of the solution

We show in three steps that there exists a unique solution:

1 use the first two conditions to get (ct)t>0 and (λt)t≥0 as functions of
c0,

2 use the next two conditions to get (bt)t>0 and c0,

3 show that the last two conditions are satisfied by the paths (bt)t>0,
(ct)t≥0 and (λt)t≥0 thus obtained.
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Euler equation I

The first condition implies λt = e−(ρ−n)tu′(ct).

Using the second condition, we then get

·
u′(ct)

u′(ct)
= ρ − rt

from which we deduce the Euler equation (or “Ramsey’s optimal-savings
rule”, or “Keynes-Ramsey rule”):

·
ct
ct

=

[
−u′′(ct)ct
u′(ct)

]−1

(rt − ρ) .

John M. Keynes: English economist, born in 1883 in Cambridge, deceased
in 1946 in Firle.
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Euler equation II

There is a positive growth of per-capita consumption (
·
ct
ct

> 0) if and only if

the interest rate is higher than the rate of time preference (rt > ρ).

This growth is higher, the larger the elasticity of intertemporal
substitution σ(ct), where

σ(ct) ≡
[
−u′′(ct)ct
u′(ct)

]−1

> 0.

The inverse of σ(ct) is equal to the opposite of the elasticity of marginal
utility u′(ct) with respect to ct ,

1

σ(ct)
=

−u′′(ct)ct
u′(ct)

=
− du′(ct )

u′(ct )
dct
ct

,

which measures the curvature of u at point ct and is also called “coefficient
of relative risk aversion” (for the reason mentioned on page 20).
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Euler equation III

For some given ρ and σ(ct), the higher the interest rate rt , the more
households invest, and therefore the higher the growth rate of ct .

For some given rt and σ(ct), the higher the rate of time preference ρ, the
less households invest, and therefore the lower the growth rate of ct .

For some given ρ and rt , the higher the elasticity of intertemporal
substitution σ(ct), the less households want to smooth ct over time, and
therefore the higher the growth rate of ct .
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Transversality condition

Integrating the differential equation
·
λt = − (rt − n) λt (coming from the

second condition), we get

λt = λ0e
−
∫ t
0 (rτ−n)dτ

where λ0 = u′(c0) > 0 because c0 is finite (c0 ≤ Y0
L0

< +∞).

The transversality condition lim
t→+∞

btλt = 0 can therefore be rewritten as

lim
t→+∞

[
bte

−
∫ t
0 (rτ−n)dτ

]
= 0

(actualized value at time 0 of the total amount of assets in the long term
= 0).
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Transversality condition and solvency constraint

The transversality condition implies the solvency constraint:

lim
t→+∞

[
bte

−
∫ t
0 (rτ−n)dτ

]
= 0 =⇒ lim

t→+∞

[
bte

−
∫ t
0 (rτ−n)dτ

]
≥ 0.

The solvency constraint forbids households from having a total debt
(−Bt > 0) forever increasing at a rate higher than or equal to rt .

The transversality condition indicates that it is not optimal for households
to have a total amount of assets (Bt > 0) forever increasing at a rate higher
than or equal to rt .
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Transversality condition and intertemp. budget constraint

Equivalently, the transversality condition implies that the intertemporal
budget constraint is binding:

lim
t→+∞

[
bte

−
∫ t
0 (rτ−n)dτ

]
= 0 =⇒∫ +∞

0
cte

−
∫ t
0 (rτ−n)dτdt = b0 +

∫ +∞

0
wte

−
∫ t
0 (rτ−n)dτdt.

The intertemporal budget constraint forbids households from having an
actualized value at time 0 of their future consumptions strictly higher than
the sum of their wealth at time 0 and the actualized value at time 0 of their
future wage incomes.

The transversality condition indicates that it is not optimal for households
to have an actualized value at time 0 of their future consumptions strictly
lower than this sum.
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Case of a constant elasticity of intertemporal substitution

Functional form:

{
u(ct) =

c1−θ
t −1
1−θ for θ ∈ R+ ∖ {0, 1} ,

u(ct) = ln(ct) for θ = 1.

The elasticity of intertemporal substitution is then constant: σ(ct) =
1
θ (we

refer to this case as the CRRA case for “Constant Relative Risk
Aversion”).

We can then rewrite the Euler equation as
·
ct
ct

= rt−ρ
θ and integrate it to get

ct = c0e
∫ t
0 (

rτ−ρ
θ )dτ.

Replacing ct with this expression in the binding intertemporal budget
constraint, we then get

c0 =
b0 +

∫ +∞
0 wte

−
∫ t
0 (rτ−n)dτdt∫ +∞

0 e
∫ t
0 [(

rτ−ρ
θ )−(rτ−n)]dτdt

.
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Case of exponential preferences

Functional form:
u(ct) = −αe−

1
α ct ,

where α > 0.

Part 2 of the tutorials studies this case of exponential preferences.

The Euler equation can then be rewritten as
·
ct
ct

= α
ct
(rt − ρ), and Part 2 of

the tutorials shows that one cannot then get a positive and constant growth
rate of per-capita consumption in the long term.
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Usage cost of capital and real interest rate

We assume that capital depreciates at rate δ, as in Chapter 1.

At time t, a household can in particular

rent from t to t + dt one unit of good as capital to firms,
lend from t to t + dt this unit of good to other households.

At time t + dt, the first option brings them ztdt − δdt units of good, the
second one rtdt units of good.

In equilibrium, the household must be indifferent between these two options,
so

rt = zt − δ

(if rt > zt − δ, then all households would want to lend and none would want
to borrow; if rt < zt − δ, then all households would want to borrow and none
would want to lend; in both cases, the loans market would not be cleared).
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Clearing of other markets

In equilibrium, the representative household neither lends nor borrows, so all
their assets are capital ownership titles:

Bt = Kt .

In the labor market, demand is equal to supply:

Nt = Lt .

The goods-market-clearing condition

Yt︸︷︷︸
output

= Ct︸︷︷︸
consumption

+ It︸︷︷︸
investment

can be rewritten, using
·
K t = It − δKt , as
·
K t︸︷︷︸

variation in the
capital stock

= Yt − Ct︸ ︷︷ ︸
savings

− δKt︸︷︷︸
depreciation

.
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Equilibrium conditions on κt and γt I

Denoting f (x) ≡ F (x , 1) for all x > 0 and differentiating F (Ki ,t ,AtNi ,t) =

AtNi ,t f (
Ki ,t

AtNi ,t
) with respect to Ki ,t , we get

F1(Ki ,t ,AtNi ,t) = f ′
(

Ki ,t

AtNi ,t

)
.

We deduce, using the first-order condition F1(Ki ,t ,AtNi ,t) = zt , that
Ki ,t
Ni ,t

does not depend on i and is therefore equal to Kt
Nt

.

As a consequence,

Yt ≡ ∑I

i=1
Yi ,t = ∑I

i=1
F (Ki ,t ,AtNi ,t) = ∑I

i=1
Ni ,tF

(
Ki ,t

Ni ,t
,At

)
= ∑I

i=1
Ni ,tF

(
Kt

Nt
,At

)
= NtF

(
Kt

Nt
,At

)
= F (Kt ,AtNt).
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Equilibrium conditions on κt and γt II

Differentiating F (Ki ,t ,AtNi ,t) = AtNi ,t f (
Ki ,t

AtNi ,t
) with respect to Ki ,t and

Ni ,t , we get

F1(Ki ,t ,AtNi ,t) = f ′
(

Ki ,t

AtNi ,t

)
,

AtF2(Ki ,t ,AtNi ,t) = At

[
f

(
Ki ,t

AtNi ,t

)
− Ki ,t

AtNi ,t
f ′
(

Ki ,t

AtNi ,t

)]
.

Using
Ki ,t
Ni ,t

= Kt
Nt

, Nt = Lt , κt ≡ Kt
AtLt

and rt = zt − δ, we can the rewrite

the first-order conditions of firms’ optimization problem as

rt = f ′(κt)− δ (“real interest rate = marginal productivity of capital
− capital depreciation rate”),

wt = At [f (κt)− κt f
′(κt)].

Olivier Loisel, Ensae Macroeconomics 1 (2/7): The Cass-Koopmans-Ramsey model Sept.-Dec. 2024 45 / 91



Introduction Equilibrium conditions Equilibrium determination

Equilibrium conditions on κt and γt III

Using the last conditions, we can rewrite households’ instantaneous budget
constraint as

·
bt =

[
f ′(κt)− δ − n

]
bt + At

[
f (κt)− κt f

′(κt)
]
− ct .

Using Bt = Kt , we get bt = Atκt and hence

·
κt = f (κt)− γt − (n+ g + δ) κt

where γt ≡ ct
At

= Ct
AtLt

is consumption per effective-labor unit.

This differential equation can be interpreted as “variation in the capital
stock = savings − dilution − dépréciation” (per effective-labor unit) and is
nothing else than the goods-market-clearing condition.
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Equilibrium conditions on κt and γt IV

The result that the goods-market-clearing condition can be derived from the
other equilibrium conditions is a consequence of Walras’ law.

Walras’ law: over all the markets, the sum of net demands weighted by
prices is equal to zero.

Corollary of Walras’ law: in an economy with N markets, if N − 1 markets
clear, then the Nth market clears too.

Walras’ law thus implies that one market-clearing condition is redundant −
for instance here the goods-market-clearing condition.

Léon Walras: French economist, born in Évreux in 1834, deceased in
Clarens in 1910.
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Equilibrium conditions on κt and γt V

Using bt = κtA0e
gt , A0 > 0 and rt = f ′(κt)− δ, we can rewrite the

transversality condition as

lim
t→+∞

{
κte

−
∫ t
0 [f

′(κτ)−(n+g+δ)]dτ
}
= 0.

From now on, we consider a constant elasticity of intertemporal substitution,
equal to 1

θ .

Using rt = f ′(κt)− δ and γt ≡ ct
At
, we can then rewrite the Euler equation

as
·
γt

γt
=

1

θ

[
f ′(κt)− δ − ρ − θg

]
.
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Equilibrium conditions on κt and γt VI *

(κt)t≥0 and (γt)t≥0 are therefore determined by two differential equations,
one initial condition and one terminal condition:

·
κt = f (κt)− γt − (n+ g + δ) κt ,

·
γt

γt
=

1

θ

[
f ′(κt)− δ − ρ − θg

]
,

κ0 =
K0

A0L0
,

lim
t→+∞

{
κte

−
∫ t
0 [f

′(κτ)−(n+g+δ)]dτ
}
= 0.

The other endogenous variables are residually determined, from (κt)t≥0 and
(γt)t≥0, using the other equilibrium conditions.

We get the equilibrium conditions of the Solow-Swan model when the
second and fourth conditions are replaced by γt = (1− s)f (κt).
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Steady state I

Steady state ≡ situation in which κ0 is such that, in equilibrium, all
quantities are non-zero and grow at constant rates.

The differential equation in
·
γt implies that κt is constant at the steady state.

The differential equation in
·
κt then implies that γt is constant at the steady

state.

Therefore, at the steady state,

κt and γt are constant,
kt ≡ Kt

Lt
= Atκt and ct ≡ Ct

Lt
= Atγt grow at rate g ,

yt ≡ Yt
Lt

= At f (κt) grows at rate g ,

the saving rate Yt−Ct
Yt

= 1− γt

f (κt )
is constant,

as in the Solow-Swan model.
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Steady state II

Replacing
·
κt with 0 in the differential equation in

·
κt , we get

γt = f (κt)− (n+ g + δ) κt ,

which corresponds to a bell-shaped curve in the plane (κt ,γt).

Replacing
·
γt with 0 in the differential equation in

·
γt , we get

f ′(κt) = δ + ρ + θg ,

which corresponds to a vertical straight line in the plane (κt ,γt).

The intersection point of this curve and this straight line corresponds to
the steady-state value of (κt ,γt), denoted by (κ∗,γ∗).
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Steady state III 

κ* 0 

γt 

0 
κt 

γ* 
𝜅̇௧ = 0 

𝛾̇௧ = 0 

κgr 
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Steady state IV

The value κgr of κt maximizing the bell-shaped curve is defined by

f ′(κgr ) = n+ g + δ

(golden rule of capital accumulation of the Solow-Swan model).

The conditions κ∗ = κ0 > 0 and

lim
t→+∞

{
κ∗e−

∫ t
0 [f

′(κ∗)−(n+g+δ)]dτ
}
= 0

imply f ′(κ∗) > n+ g + δ = f ′(κgr ) and hence κ∗ < κgr , as apparent in the
previous figure.
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Steady state V

We do not have κ∗ > κgr , so we do not have dynamic inefficiency (due to
capital over-accumulation), because of households’ optimizing behavior.

We have κ∗ < κgr and not κ∗ = κgr because households are sufficiently
impatient for ρ − n > (1− θ) g (necessary condition for households’
intertemporal utility to take a finite value at the steady state).

Because of households’ impatience, when κt > κ∗, a decrease in savings
raises the short-term component of intertemporal utility more than it
reduces its long-term component.

The equation f ′(κ∗) = δ + ρ + θg is called the “modified golden rule”.
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Steady state VI

Differentiating f ′(κ∗) = δ + ρ + θg and γ∗ = f (κ∗)− (n+ g + δ) κ∗ with
respect to ρ, θ, g , δ or n, and using f ′(κ∗) > n+ g + δ, we get that

κ∗ is strictly decreasing in ρ, θ, g , δ, and constant in n,
γ∗ is strictly decreasing in ρ, θ, g , δ, n.

These analytical results can be illustrated graphically in the previous figure:

a rise in n moves the bell-shaped curve downwards,
a rise in ρ or θ moves the straight line leftwards,
a rise in g or δ does both.

Interpretation of the effect of a rise in θ on κ∗:

θ ↑ ⇒ elasticity of intertemporal substitution ↓ ⇒ rt ↑
to make households accept

·
ct
ct

= g ⇒ f ′(κt) ↑ ⇒ κt ↓.
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Steady state VII

At the steady state, the Cass-Koopmans-Ramsey model therefore accounts
for the first five “stylised facts” (i.e. empirical regularities) identified by
Kaldor (1961):

1 per-capita output grows:
·
y t
yt

= g ≥ 0,

2 the per-capita capital stock grows:
·
kt
kt

= g ≥ 0,

3 the rate of return of capital is constant: rt = f ′(κ∗)− δ,

4 the ratio capital / output is constant: Kt
Yt

= κ∗

f (κ∗) ,

5 the labor and capital shares of income are constant:
wtLt
Yt

= f (κ∗)−κ∗f ′(κ∗)
f (κ∗) and ztKt

Yt
= κ∗f ′(κ∗)

f (κ∗)

(the sum of the factors’ shares of income is equal to one because under
perfect competition, all the firms’ benefits are used to pay for the factors, as
we saw on page 17).
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Kaldor’s stylised fact No. 1

Per-capita GDP in the US, 1870-2014
(logarithmic scale, 2009 dollars)

2 CHARLES I. JONES

Figure 1: GDP per person in the United States
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Note: Data for 1929–2014 are from the U.S. Bureau of Economic Analysis, NIPA Table 7.1. Data
before 1929 are spliced from Maddison (2008).

the world. To what extent are countries behind the frontier catching up, falling behind,

or staying in place? And what characteristics do countries in these various groups

share?

1. Growth at the Frontier

We begin by discussing economic growth at the “frontier.” By this I mean growth among

the richest set of countries in any given time period. During the last century or so, the

United States often serves as a stand in for the frontier, and we will follow this tradition.

1.1. Modern Economic Growth

Figure 1 shows one of the key stylized facts of frontier growth: For nearly 150 years,

GDP per person in the U.S. economy has grown at a remarkably steady average rate of

around 2 percent per year. Starting at around $3,000 in 1870, per capita GDP rose to

more than $50,000 by 2014, a nearly 17-fold increase.

Source: Jones (2015).
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Kaldor’s stylised fact No. 4

Ratio of physical capital to GDP in the US, 1929-2014
(depending on the measure of physical capital considered)

THE FACTS OF ECONOMIC GROWTH 11

Figure 3: The Ratio of Physical Capital to GDP

1930 1940 1950 1960 1970 1980 1990 2000 2010
0

1

2

3

4

5

6

7

Total

Non-residential

Private non-residential

YEAR

RATIO OF REAL K / REAL GDP

Source: Burea of Economic Analysis Fixed Assets Tables 1.1 and 1.2. The numerator in
each case is a different measure of the real stock of physical capital, while the denominator
is real GDP.

and non-residential capital, has a ratio of 3 to real GDP. Focusing on non-residential

capital brings this ratio down to 2, and further restricting to private non-residential

capital leads a ratio of just over 1.

The capital stock is itself the cumulation of investment, adjusted for depreciation.

Figure 4 shows nominal spending on investment as a share of GDP back to 1929. The

share is relatively stable for much of the period, with a notable decline during the last

two decades.

In addition to cumulating investment, however, another step in going from the

(nominal) investment rate series to the (real) capital-output ratio involves adjusting for

relative prices. Figure 5 shows the price of various categories of investment, relative to

the GDP deflator. Two facts stand out: the relative price of equipment has fallen sharply

since 1960 by more than a factor of 3 and the relative price of structures has risen since

1929 by a factor of 2 (for residential) or 3 (for non-residential).

A fascinating observation comes from comparing the trends in the relative prices

shown in Figure 5 to the investment shares in Figure 4: the nominal investment shares

Source: Jones (2015).

Remark: Kaldor’s stylised facts No. 1 and 4 imply Kaldor’s stylised fact No. 2.
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Kaldor’s stylised fact No. 5

Capital and labor shares of factor payments in the US
(in blue/green: with/without self-employed, 1948-2014/1975-2014, in %)

THE FACTS OF ECONOMIC GROWTH 15

Figure 6: Capital and Labor Shares of Factor Payments, United States
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Note: The series starting in 1975 are from Karabarbounis and Neiman (2014) and measure
the factor shares for the corporate sector, which the authors argue is helpful in eliminating
issues related to self-employment. The series starting in 1948 is from the Bureau of Labor
Statistics Multifactor Productivity Trends, August 21, 2014, for the private business sector.
The factor shares add to 100 percent.

even before 2000. Other recent papers looking at this question include Elsby, Hobijn

and Şahin (2013), and Bridgman (2014).

A closely-related fact is the pattern of factor shares exhibited across industries within

an economy and across countries. Jones (2003) noted the presence of large trends, both

positive and negative, in the 35 industry (2-digit) breakdown of data in the United States

from Dale Jorgenson. Gollin (2002) suggests that factor shares are uncorrelated with

GDP per person across a large number of countries.

2.4. Human capital

The other major neoclassical input in production is human capital. Figure 7 shows a

time series for one of the key forms of human capital in the economy, education. More

specifically, the graph shows educational attainment by birth cohort, starting with the

cohort born in 1875.

Source: Jones (2015).
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Steady state VIII

At the steady state, the Solow-Swan model accounts for the 1st, 2nd and 4th

stylised facts of Kaldor (1961), but not for the 3rd and 5th ones (because it
does not consider the prices wt , zt and rt).

At the steady state, neither the Solow-Swan model nor the Cass-Koopmans-
Ramsey model easily account for the 6th stylised fact of Kaldor (1961):

6 the growth rate of per-capita output varies across countries,

because they imply that the growth rate
·
y t
yt

is equal to the rate of
technological progress g which is probably not permanently different across
countries (due to the possibility of knowledge diffusion across countries).
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Kaldor’s stylised fact No. 6 I

Per-capital GDP in various countries, 1870-2014 (US = 100)

38 CHARLES I. JONES

Figure 22: The Spread of Economic Growth since 1870
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Source: The Maddison Project, Bolt and van Zanden (2014).

rapid growth takes hold at different points in time. Argentina is relatively rich by 1870

and growth takes off in Japan after World War II. In 1950, China was substantially poorer

than Ghana — by more than a factor of two according to Maddison. Rapid growth since

1978 raises China’s living standards to more than a factor of 25 over the benchmark level

of $300 per year.

Figure 22 shows the spread of growth since 1870 in an alternative way, by plotting

incomes relative to the U.S. level. A key fact that stands out when the data are viewed

this way is the heterogeneity of experiences. Some countries like the U.K., Argentina,

and South Africa experience significant declines in their incomes relative to the United

States, revealing the fact that their growth rates over long periods of time fell short of the

2% growth rate of the frontier. Other countries like Japan and China see large increases

in relative incomes.

Source: Jones (2015).
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Kaldor’s stylised fact No. 6 II

Dispersion of per-capita GDP across one hundred countries, 1960-2011

44 CHARLES I. JONES

Figure 27: Divergence since 1960
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Source: The Penn World Tables 8.0, calculated across a stable sample of 100 countries.

Table 4: The Very Long-Run Distribution

—— Distribution —— Years to

“Bin” 1960 2010 Long-Run “Shuffle”

Less than 5 percent 10 25 26 1470

Between 5 and 10 percent 21 13 11 1360

Between 10 and 20 percent 27 14 8 1040

Between 20 and 40 percent 19 16 8 1120

Between 40 and 80 percent 15 19 28 1440

More than 80 percent 8 13 19 1490

Entries under “Distribution” reflect the percentage of countries with relative (to the U.S.)
GDP per person in each bin. “Years to Shuffle” indicates the number of years after which
the best guess as to a country’s location is given by the long-run distribution, provided that
the country begins in a particular bin. Computed following Jones (1997) using the Penn
World Tables 8.0 for 100 countries.

Source: Jones (2015).
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Convergence to steady state I

The differential equation in
·
κt implies that

below the bell-shaped curve, κt increases over time,
above the bell-shaped curve, κt decreases over time.

The differential equation in
·
γt implies that

to the left of the straight line, γt increases over time,
to the right of the straight line, γt decreases over time.

The system of differential equations has therefore a stable arm and an
unstable arm in the plane (κt ,γt).
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Convergence to steady state II

Phase diagram: shape of the paths satisfying the two differential
equations (but not necessarily the initial and terminal conditions)

 

κ* 0 

γt 

0 

κt

ሶ௧ߢ ൌ 0 

ሶ௧ߛ ൌ 0 
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Convergence to steady state III

In the neighborhood of the steady state, the stable (resp. unstable) arm
corresponds to the eigenvector associated to the negative (resp. positive)
eigenvalue of the matrix M of the log-linearized system of differential
equations

·[
ln( κt

κ∗ )
ln( γt

γ∗ )

]
= M

(2×2)

[
ln( κt

κ∗ )
ln( γt

γ∗ )

]
.

The stable arm is the unique path, called the “saddle path”, along which
(κt ,γt) can converge to (κ∗,γ∗).
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Convergence to steady state IV

For a given κ0 ∈ (0, κ∗), there are three alternative cases for γ0:

1 γ0 is such that (κ0,γ0) is on the saddle path:

(κt ,γt) converges to (κ∗,γ∗);
the four equilibrium conditions are satisfied.

2 γ0 is such that (κ0,γ0) is below the saddle path (Point P1):

(κt ,γt) crosses the vertical straight line and then converges to Point
Q1 (the reason being that, in the right lower quadrant, (κt ,γt) cannot
cross the bell-shaped curve because the slope would then be vertical,
nor can it cross the x axis because consumption cannot be negative);

in the neighborhood of Q1, κt > κgr , so f ′(κt) < f ′(κgr ) = n+ g + δ,
so the transversality condition is not satisfied:

lim
t→+∞

{
κte

−
∫ t
0 [f

′(κτ)−(n+g+δ)]dτ
}
> 0

(households, who asymptotically save everything and consume nothing,
could raise their utility level by saving less).
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Convergence to steady state V

Phase diagram: paths for a given κ0 ∈ (0, κ∗)
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Convergence to steady state VI

3 γ0 is such that (κ0,γ0) is above the saddle path (Point P2):

(κt ,γt) crosses the bell-shaped curve and then reaches Point Q2 in

finite time because
··
κt < 0 in the left upper quadrant;

proof that
··
κt < 0 in this quadrant: differentiate

·
κt = f (κt)− γt

− (n+ g + δ) κt and get
··
κt = [f ′(κt)− (n+ g + δ)]

·
κt −

·
γt with, in

this quadrant,
·
κt < 0,

·
γt > 0 and f ′(κt) > f ′(κgr ) = n+ g + δ;

at the time when Point Q2 is reached, γt becomes instantaneously zero

(because Yt = 0), so the differential equation in
·
γt is not satisfied

(since
·
γt does not exist at that time): households consume more and

more by dissaving more and more until there is nothing left to
consume, which is not optimal.

So, the unique equilibrium path (that is to say the unique path satisfying
the four equilibrium conditions) is the saddle path.

The reasoning is similar, and the conclusion is identical, when κ0 > κ∗.
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The model therefore predicts a conditional convergence of ln(yt) across
countries, like the Solow-Swan model.

More precisely, it predicts the long-term convergence of ln(yt) across
countries that have different y0s but the same

technology parameters A0, g , f (.),
parameters governing the dynamics of capital and labor n, δ,
preference parameters ρ, θ.

We admit that, for κ0 < κ∗,

the saving rate can increase or decrease over time,
the growth rate always decreases over time,

so an economy grows all the more rapidly as it is far away from its
steady-state path, like in the Solow-Swan model.

Part 2 of the tutorials studies the speed of convergence in the neighborhood
of the steady state, as well as the path followed by the economy following a
permanent fall in ρ.
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Social optimality of the competitive equilibrium I

Market equilibrium (or decentralized allocation) ≡ equilibrium obtained
when

agents interact with each other on markets,
each agent solves their own optimization problem,
markets clear.

Competitive equilibrium ≡ market equilibrium when all markets are
perfectly competitive (like in the Cass-Koopmans-Ramsey model).

So, a competitive equilibrium is an equilibrium obtained when

agents interact with each other on perfectly competitive markets,
each agent solves their own optimization problem, choosing quantities
and considering prices as given,
prices are such that markets clear.
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Social optimality of the competitive equilibrium II

Representative-agent model ≡ model in which only one type of agent,
called representative agent, has a utility function (like the
Cass-Koopmans-Ramsey model, in which only households have a utility
function).

In representative-agent models, the market equilibrium is said to be socially
optimal if and only if it coincides with the allocation chosen by the
benevolent, omniscient and omnipotent planner (denoted by BOOP),
also called “centralized allocation”.
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Social optimality of the competitive equilibrium III

The BOOP , who is a fictive character, chooses all quantities subject to

the non-negativity constraint,
the technology constraint,
the resource constraint,

in order to maximize the utility of the representative agent.

Since the market equilibrium satisfies these three constraints, the value taken
by the representative agent’s utility function with the BOOP is necessarily
higher than or equal to the value that it takes in the market equilibrium.
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Social optimality of the competitive equilibrium IV

Optimization problem of the BOOP : for a given κ0 > 0,

max
(ct )t≥0,(κt )t>0

∫ +∞

0
e−(ρ−n)tu(ct)dt

subject to the constraints

1 ∀t ≥ 0, ct ≥ 0 (non-negativity of consumption),

2 ∀t > 0, κt ≥ 0 (non-negativity of capital),

3 ∀t ≥ 0,
·
κt = f (κt)− ct

A0egt
− (n+ g + δ)κt (technology and resource

constraint).

We solve this dynamic-optimization problem by applying the optimal-control
theory, as previously in this chapter.
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Social optimality of the competitive equilibrium V

Hamiltonian associated with the optimization problem of the BOOP :

Hp(ct , κt ,λp
t , t) ≡ e−(ρ−n)tu(ct) + λp

t

[
f (κt)−

ct
A0egt

− (n+ g + δ)κt

]
where λp

t represents the value, measured in utility units at time 0, of an
increase of one unit of good in the resources at time t.

We then get the following optimality conditions:

λp
t = A0e

(n+g−ρ)tu′(ct) (1st-order cond. on the control var.),
·
λ
p

t = [n+ g + δ − f ′(κt)] λp
t (costate equation),

·
κt = f (κt)− ct

A0egt
− (n+ g + δ) κt (resource constraint),

lim
t→+∞

κtλp
t = 0 (transversality condition).
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Social optimality of the competitive equilibrium VI

Manipulating these conditions in the same way as previously, we get

·
κt = f (κt)− γt − (n+ g + δ) κt (differential equation in

·
κt),

·
γt
γt

= 1
θ [f

′(κt)− δ − ρ − θg ] (differential equation in
·
γt),

lim
t→+∞

{
κte

−
∫ t
0 [f

′(κτ)−(n+g+δ)]dτ
}
= 0 (transversality condition).

These three conditions and the condition κ0 = K0
A0L0

are identical to the four

competitive-equilibrium conditions on (κt)t≥0 and (γt)t≥0: the
competitive equilibrium is therefore socially optimal.

As a consequence, there is no role to play for economic policy in this model:
the optimal economic policy is laisser-faire.
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Social optimality of the competitive equilibrium VII

The social optimality of the competitive equilibrium in this model is a
consequence of the first welfare theorem.

According to this theorem, if

1 there is no externality,
2 markets are perfectly competitive,
3 markets are “complete” (≡ with non-zero demand and supply),
4 the number of agent types is finite,

then the competitive equilibrium is a Pareto optimum.

Pareto optimum ≡ situation in which one cannot increase the utility of one
agent without decreasing the utility of another agent (“rob Peter to pay
Paul”).

Vilfredo Pareto: Italian sociologist and economist, born in 1848 in Paris,
deceased in 1923 in Céligny.
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Social optimality of the competitive equilibrium VIII

This theorem formalizes Smith’s (1776) concept of “invisible hand”,
according to which individual actions only guided by personal interest can
contribute to the wealth and welfare of all:

“But the annual revenue of every society is always precisely equal to the

exchangeable value of the whole annual produce of its industry, or rather is

precisely the same thing with that exchangeable value. As every individual,

therefore, endeavours as much as he can both to employ his capital in the support

of domestic industry, and so to direct that industry that its produce may be of the

greatest value; every individual necessarily labours to render the annual revenue of

the society as great as he can. He generally, indeed, neither intends to promote

the public interest, nor knows how much he is promoting it.

Olivier Loisel, Ensae Macroeconomics 1 (2/7): The Cass-Koopmans-Ramsey model Sept.-Dec. 2024 78 / 91



Equilibrium optimality Environmental extensions Conclusion Appendix

Social optimality of the competitive equilibrium IX

By preferring the support of domestic to that of foreign industry, he intends only

his own security; and by directing that industry in such a manner as its produce

may be of the greatest value, he intends only his own gain, and he is in this, as in

many other cases, led by an invisible hand to promote an end which was no part of

his intention. Nor is it always the worse for the society that it was no part of it.

By pursuing his own interest he frequently promotes that of the society more

effectually than when he really intends to promote it. I have never known much

good done by those who affected to trade for the public good. It is an affectation,

indeed, not very common among merchants, and very few words need be employed

in dissuading them from it.”

Adam Smith: Scottish philosopher and economist, born in 1723 in
Kirkcaldy, deceased in 1790 in London.
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Social optimality of the competitive equilibrium X

In representative-agent models, like the Cass-Koopmans-Ramsey model,

there exists a unique symmetric Pareto optimum (symmetric in the
sense that the utility function takes the same values for all agents),

this Pareto optimum corresponds to the allocation that maximizes the
representative agent’s welfare (i.e. the allocation chosen by the
BOOP).

The four conditions under which the theorem applies are met in the
Cass-Koopmans-Ramsey model (present chapter), but not in

the DICE model (Chapter 3, Condition 1),

the model with learning by doing (Chapter 4, Condition 1),

the model with product variety (Chapter 5, Condition 2),

the overlapping-generations model (Chapter 7, Conditions 1 and 4).
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Taking non-renewable natural resources into account I

The CKR model, in which the only production factors are capital and labor,
does not enable one to study the consequences of the exploitation of
non-renewable natural resources (oil, natural gas, coal, minerals...).

For most non-renewable natural resources, the known world reserves that are
exploitable at current prices correspond to a few decades of exploitation.

Part 3 of the tutorials introduces non-renewable natural resources in the
CKR model, as a third production factor, and studies the positive and
normative implications.
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Taking non-renewable natural resources into account II

Part 3 of the tutorials notably shows that

in the competitive equilibrium, the growth rate of the price of
non-renewable natural resources is equal to the interest rate
(“Hotelling’s rule”, after Hotelling, 1931),

the planner chooses a per-capita-consumption path that decreases to
zero over time, which harms future generations,

in order to implement the allocation chosen by a planner under an
intergenerational-equity constraint (requiring a constant-over-time
per-capita consumption), one has to re-invest the rent extracted from
the exploitation of non-renewable resources into physical capital
(“Hartwick’s rule”, after Hartwick, 1977).
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Growth and climate change

The CKR model does not take into account the consequences of economic
activity for the climate nor, vice-versa, the consequences of climate change
for the economy.

Nordhaus (1992, 1994) has extended the CKR model to take these
consequences into account, giving rise to the DICE model (≡ Dynamic
Integrated Climate-Economy model), which is a model of the world economy
and the world climate.

The DICE model does not have the same positive implications, nor the same
normative implications, as the CKR model.

Chapter 3 presents the DICE model and studies its normative implications.
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Main predictions of the model

As in the Solow-Swan model, in the long term,

growth stems uniquely from technological progress,

the effect of capital accumulation on growth disappears because of the
decreasing marginal productivity of capital,

there is conditional convergence of per-capita output levels (in
logarithm) across countries.

In the long term, the first five stylised facts of Kaldor (1961) are obtained.

The competitive equilibrium is socially optimal; in particular, there cannot
be dynamic inefficiency due to capital over-accumulation.
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One limitation of the model

The rate of technological progress g is exogenous. If it were
endogenous,

could some policies affect it?
what role should they play?

↪→ Chapters 4 and 5 (“endogenous-growth theories”) endogenize the rate of
technological progress.
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Interpretation of optimality conditions (households) I

As a reminder, the Hamiltonian associated to households’ optim. problem is

H(ct , bt ,λt , t) ≡ e−(ρ−n)tu(ct) + λt [(rt − n) bt + wt − ct ]

and the corresponding optimality conditions are:

1 ∀t ≥ 0, ∂H
∂ct

= 0 (first-order condition on the control variable),

2 ∀t ≥ 0, ∂H
∂bt

= −
·
λt (costate equation),

3 ∀t ≥ 0,
·
bt = (rt − n)bt + wt − ct (instantaneous budget constraint),

4 lim
t→+∞

btλt = 0 (transversality condition),

5 lim
t→+∞

[
bte

−
∫ t
0 (rτ−n)dτ

]
≥ 0 (solvency constraint),

6 ∀t ≥ 0, ct ≥ 0 and λt ≥ 0 (non-negativity constraints).
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Interpretation of optimality conditions (households) II

Conditions 3, 5 and “6a” are the constraints of the optimization problem.

Condition “6b” indicates that λt , which measures the utility at time 0 of
one unit of savings at time t, cannot be negative.

Condition 4 implies that limt→+∞ btλt , which measures the utility at time 0
of the stock of savings at time t → +∞, cannot be positive at the optimum
(otherwise households could increase their intertemporal utility by saving less
and consume more in the long term).

Condition 1 can be rewritten as

λt = e−(ρ−n)tu′ (ct)

and can be interpreted as follows: at the optimum, the utility at time 0 of
one unit of savings at time t must be equal to the utility at time 0 of one
unit of consumption at time t, otherwise households could increase their
intertemporal utility by choosing another sharing between consumption and
savings.
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Interpretation of optimality conditions (households) III

Condition 2 can be rewritten as
·
λt = − (rt − n) λt .

Assume that households marginally deviate from the optimum as follows:

at time t, they consume one less unit and save one more unit,
after time t, they keep this additional unit of savings and consume the
financial incomes that it generates.

In terms of utility at time 0, this marginal deviation

has a cost of e−(ρ−n)tu′ (ct) = λt ,
brings a benefit of∫ +∞
t e−(ρ−n)τu′ (cτ) (rτ − n) dτ =

∫ +∞
t λτ (rτ − n) dτ,

where the equalities are obtained by using Condition 1.

Since it is a marginal deviation from the optimum, this cost and this benefit
must be equal to each other: λt =

∫ +∞
t λτ (rτ − n) dτ.

Differentiating with respect to t, we get Condition 2:
·
λt = − (rt − n) λt .
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