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Abstract

We introduce banks and bank reserves into the basic New Keynesian model and allow
the central bank to set both the interest rate on reserves (IOR rate) and the nominal stock of
reserves. Our model can account, in qualitative terms, for three key features of US in�ation
during the recent zero-lower-bound (ZLB) episodes: no signi�cant de�ation, little in�ation
volatility, and no signi�cant in�ation following quantitative-easing policies. Crucial to this
result is our assumption that demand for bank reserves got close to satiation, but did not
reach full satiation. We introduce liquid government bonds into the model to reconcile our
non-satiation assumption with the fact that Treasury-bill rates were often below the IOR
rate during the ZLB episodes. Looking ahead, we explore the implications of our model for
the normalization of monetary policy and its operational framework (�oor system).

1 Introduction

Since 2008, the US economy has gone through two zero-lower-bound (ZLB) episodes, one during

and after the Great Recession (from December 2008 to December 2015), the other during the

COVID crisis (from March 2020 to March 2022). Broad facts about in�ation and money-market

rates during these ZLB episodes pose challenges to standard − New Keynesian (NK) or mone-

tarist − models of monetary policy. On the one hand, as emphasized by Cochrane (2018), US

in�ation data during the 2008-2015 ZLB episode re�ect neither the strong de�ationary pressures

nor the excessive in�ation volatility that NK models would predict. The same observation can

be made about the 2020-2022 ZLB episode.

On the other hand, monetarist doctrine, Cochrane (2018) suggests, faces the challenge of ex-

plaining why some large expansions of the Fed's balance sheet had no apparent in�ationary

e�ects during these episodes. Another challenge for monetarist models is that money-market

rates were often below the interest rate on reserves (henceforth, the IOR rate) during these
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episodes. Many observers [e.g., Cochrane (2014)] take this fact as prima facie evidence that the

Fed satiated the demand for reserves and, thus, as an argument against any model that tries to

confront the data by invoking a monetary friction.

In this paper, we present a simple monetary-policy model that can qualitatively account for

these key observations about US in�ation and money-market rates during ZLB episodes, and we

explore the model's implications for the normalization and operational framework of monetary

policy. Our model adds a monetarist element to the standard NK model by assuming that bank

reserves have a convenience yield − holding reserves can reduce banking costs in our model. The

central bank in our model sets both the IOR rate and the nominal stock of bank reserves; these

are two instruments that the Fed controls directly and has emphasized in its communication

since 2008.1

In an earlier paper (Diba and Loisel, 2021), we showed that adding a (possibly small) monetary

friction to the NK model leads to a resolution of some NK puzzles and paradoxes.2 This

resolution also o�ers a response to Cochrane's (2018) criticisms of the NK model about its

counterfactual implications for in�ation at the ZLB. As Gabaix (2020) points out, and we explain

brie�y in the text, these counterfactual implications ultimately arise because the NK model does

not deliver local-equilibrium determinacy under a permanent interest-rate peg. Alternative

models that deliver determinacy do not share the NK model's implausible implications about

de�ationary pressures and in�ation volatility.3 Our model delivers determinacy under a peg

because our central bank sets the money supply, either exogenously or following a quantitative-

easing (QE) rule that reacts to output and in�ation.4 In particular, setting the IOR rate

determines the demand for real reserves in the steady-state equilibrium of our model, and this

demand pins down the steady-state price level, given the outstanding nominal stock of reserves.

Having the central bank of our model set the money supply also serves to rule out the possibility

of de�ationary equilibrium paths analyzed by Benhabib et al. (2001a, 2001b). These paths are

associated, in standard monetary-policy models, with an unintended de�ationary steady state

and a permanently binding ZLB constraint. By contrast, since the central bank sets the money

supply in our model, we have a unique steady state, and in�ation is equal to the money growth

rate at this steady state. So, de�ationary steady-state equilibria cannot arise in our setup if the

central bank does not shrink the money supply.

Thus, ZLB episodes can be uneventful according to our model: they don't have to generate

1Bank reserves constitute the only central-bank liability in the cashless model that we present in the main
text. We add household cash to our model in the Appendix.

2More speci�cally, we addressed the forward-guidance puzzle, the �scal-multiplier puzzle, the reversal puzzle,
the paradox of toil, and the paradox of �exibility.

3The connection is also implied by the analysis of Michaillat and Saez (2021). They develop a model (with
relative wealth in the utility function) that delivers determinacy under a permanent peg, and they show that this
model (among other properties) does not generate a severe de�ation at the ZLB.

4Our determinacy result under an exogenous money supply only requires general assumptions like concavity
and homogeneity of utility and production functions. Our determinacy result under QE rules (presented in the
Appendix) is obtained for an iso-elastic production function and holds, we argue, for any reasonable calibration.
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severe de�ationary pressures or excessive in�ation volatility. Cochrane's (2018) criticism of

monetary-policy models, however, is two-pronged. He argues against NK models because they

imply severe de�ationary pressures and in�ation volatility, but also against monetarist doctrine

because we did not observe a signi�cant in�ationary response to the Fed's massive balance-sheet

expansions − which, Cochrane (2018) observes, seems to cast doubt on models that emphasize

the role of a stable money-demand equation. Another challenge to our monetarist perspective

on ZLB episodes is the fact that the federal-funds rate and T-bill returns dropped below the

IOR rate during these episodes. If this fact signals satiation of money demand, we lose the

link (between the money supply and the price level) that is central to monetarist doctrine, as

Cochrane (2014) and others have noted.

We show that our model, with its monetarist element, can meet both challenges: we can generate

small in�ationary responses to large monetary expansions as well as money-market rates below

the IOR rate. Our model can address these points because it gives an explicit role to bank

reserves.5 More speci�cally, we assume that holding reserves reduces, for banks, the costs

associated with making loans. And to generate a demand for bank loans, we assume that �rms

need to pay in advance their wage bill (or some fraction of it).

Under two key conditions, our model implies a weak connection between the money supply and

the price level, and can thus account for the absence of signi�cant in�ation following QE policies.

These two conditions are: (1) the demand for reserves is �close to satiation� in a sense that we

will articulate, and (2) the monetary expansion is perceived as temporary. More speci�cally, we

conduct non-linear simulations of QE policies in our model, under a calibration to US data in

November 2010 (i.e., at the start of the Fed's second round of QE). We �nd that large increases

in the money supply (say, doubling the stock of reserves) can have very small in�ationary e�ects

(around twenty basis points per annum) if balance-sheet normalization is expected to occur in

about �ve years and the marginal convenience yield of reserves is ten basis points per annum.

Our simulations suggest strongly decreasing returns to QE: much larger monetary expansions

also have fairly small in�ationary e�ects in our (non-linear) numerical simulations, as long as

policy normalization is expected to occur in, say, �ve years.

Our model can generate money-market rates below the IOR rate if non-bank entities have a

strong demand for money-market assets (e.g., holding T-bills as collateral, or in response to

regulatory constraints). To make this point, we propose an extension of our benchmark model

that allows T-bills to have a lower return than reserves without requiring that demand for

reserves be fully satiated. In our extended model, workers get utility from holding government

bonds, as a proxy for pension funds and money-market funds that hold bonds (in reality) and

provide �nancial services to households. The banks in our extended model can use bonds

instead of reserves for liquidity management, but they choose not to do so in equilibrium; so,

5Standard models − e.g., with money in the utility function − do not have enough detail and structure to
capture our points about demand for reserves and T-bills.
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the equilibrium of this extended model coincides with the equilibrium of our benchmark model,

except for T-bill returns. Adding government bonds with liquidity services, thus, enables our

model to account for T-bill returns below the IOR rate without altering any of the implications

for in�ation.

US in�ation behaved in a similar way during the 2008-2015 ZLB episode and the �rst half of the

2020-2022 ZLB episode. During the second half of the latter episode (and beyond), however, the

US economy experienced a surge in in�ation. Adverse supply shocks were presumably a major

factor leading to this surge in in�ation. Our model, however, suggests that monetary policy

may have played a role as well. In particular, if large and repeated balance-sheet expansions

eventually came to be viewed as an indication of persistently large reserve balances for the

foreseeable future, our model would predict a rise in in�ation in response to expansions that

were previously viewed as temporary. In contrast to a model with full satiation of money

demand, our model links the price level to the supply and demand for money in the long run.

Persistent balance-sheet expansions may need to be accompanied by a rise in the IOR rate or

other policies that increase money demand in our model.

Looking ahead, we explore the implications of our model for the normalization and operational

framework of monetary policy. We �nd unambiguously negative e�ects of monetary-policy

normalization on in�ation: current and expected future IOR-rate hikes and balance-sheet con-

tractions are always de�ationary. Our result is in contrast to the Neo-Fisherian implication of

some equilibria in NK models − discussed in Schmitt-Grohé and Uribe (2017) and Bilbiie (2022),

among others − that suggest policy-rate hikes may raise in�ation to target in economies that

su�er from de�ationary pressures. In our setup, the policy rate is the IOR rate, and expected

policy-rate hikes exert de�ationary pressures by increasing the demand for reserves, given the

path for the nominal stock of reserves.

We consider a ��oor system� in which the central bank sets the nominal stock of reserves ex-

ogenously and follows a rule for setting the IOR rate. Such a system, arguably, captures the

Fed's intentions for the future operational framework of monetary policy (see, e.g., Federal Open

Market Committee, 2019). We show that, in our model, this system delivers local-equilibrium

determinacy for any non-negative response of the IOR rate to current in�ation, and for a wide

range of non-negative responses of the IOR rate to current output. The Taylor principle, thus,

is not needed to ensure determinacy under a �oor system.

All the results we present in this paper presume that bank reserves have a convenience yield. In

reality, the convenience yield may arise from the banking sector's need for liquidity management

or preference for safe assets; it may also re�ect the usefulness of reserves for compliance with reg-

ulatory constraints (like liquidity-coverage requirements) and bank strategies for passing stress

tests.6 Whatever the source of the convenience yield may be in reality, its presence is central to

6Afonso et al. (2020) discuss the increase in demand for reserves re�ecting Basel III regulations.
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our analysis. Our arguments would fall apart if we assumed full satiation of demand for reserves.

Empirical evidence presented by Ennis and Wolman (2015) and Reis (2016) does not support

the satiation view during QE1. Reis's (2016) evidence, however, does not reject the satiation

hypothesis during QE2 and QE3, when large increases in reserve balances had no apparent

e�ect on expected in�ation. This type of evidence is also the gist of Cochrane's (2018) criticism

of monetarist doctrine, as we noted above. Our counter-argument, based on our numerical

simulation of QE policies, is that this evidence may also be consistent with demand for reserves

being close to satiation, rather than fully satiated. The distinction between these two possibilities

(close-to-satiation versus fully satiated demand) does matter for monetary models; indeed, the

implications of these models change discontinuously as we go from arbitrarily small convenience

yields to a literal interpretation of full satiation. The distinction, however, may be di�cult to

make in practice. For example, in contrast to Reis's (2016) evidence about expected in�ation,

Krishnamurthy and Lustig (2019) �nd statistically signi�cant e�ects of monetary policy, during

and after QE2, on the convenience yield of US Treasury bills and the foreign-exchange value of

the dollar. Copeland et al. (2022) present evidence of an apparent excess demand for reserves,

despite a large Fed balance sheet, during the �balance-sheet normalization� phase from December

2017 to September 2019.

Our work is complementary to analyses of QE − e.g., Gertler and Karadi (2011), Sims et al.

(2023) − that highlight the asset side of the central bank's balance sheet, to focus on credit-

market frictions. We highlight the liability side, to focus on in�ation and money-market rates.

Our modeling of reserves and banking costs is similar to the ones in Cúrdia and Woodford

(2011) and Ireland (2014); however, our modeling choices enable us to obtain new analytical

results.7 There is, moreover, no overlap between the topics of these two papers and our focus

on reconciling the model with �broad facts� about ZLB episodes.

Our focus on these broad facts is also what distinguishes our work from more recent contributions

that add a banking sector to the NK framework. Ennis (2018) develops a model in which the

central bank sets the IOR rate; he highlights alternative cases in which the price level �decouples�

from the monetary base (with market rates equal to the IOR rate), or moves one-for-one with

the base (with market rates below the IOR rate). Arce et al. (2020) and Bigio and Sannikov

(2021) develop models with frictions in the interbank market. These two papers provide better

microfoundations for the liquidity services of reserves. Ulate (2021) and Eggertsson et al. (2023)

analyze the e�ects of negative policy rates in models with banks. Piazzesi et al. (2022) highlight

the transmission of changes in the IOR rate to other interest rates, and compare corridor and

7Our new analytical results are the proof of local-equilibrium determinacy and the derivation of the solution
for in�ation and output under exogenous policy instruments. Our modeling of a production function for banks
and a cost channel of monetary policy is closer to Ireland (2014). Compared to Cúrdia and Woodford (2011), the
di�erences in modeling choices are the following: (i) we link banking costs to time spent on banking activities;
(ii) the borrowers in our model are �rms (borrowing the wage bill or some fraction of it); and (iii) we assume
that demand for reserves is not satiated.

5



�oor systems. Benigno and Benigno (2022) characterize optimal changes in reserves and the

IOR rate in a liquidity trap and during the policy normalization process.

In terms of analytical results, the main overlap between our paper and other NK models with

banks is between our analysis of local determinacy and the analysis in Piazzesi et al. (2022).8

In a broader sense, however, the central feature that makes the transmission mechanism of

monetary policy, in all of these models, di�erent from the standard NK mechanism is the idea

that the policy rate re�ects a �convenience yield,� or a liquidity premium that policy can a�ect.9

Earlier contributions that highlight the theoretical relevance of such a convenience yield, without

explicitly modeling banks, include Andolfatto (2015), Benigno and Nisticò (2017), Canzoneri and

Diba (2005), and Hagedorn (2018).10

Our approach to allowing for the convenience yields of bank reserves and government bonds

boils down to putting them in the utility function of a representative household. A sizeable lit-

erature explores the microfoundations of this approach. Geromichalos and Herrenbrueck (2022)

summarize and extend this literature. Williamson (2012) discusses the Great Recession from

the perspective of this literature. Andolfatto and Williamson (2015) develop a model with seg-

mented markets in which some agents can use bonds (as well as money) in exchange. This

provides better microfoundations − than our bonds-in-the-utility-function approach − for im-

parting a liquidity premium on bonds.

The rest of the paper is organized as follows. Section 2 presents our benchmark model. Sections

3 and 4 show that this model can account for the three features, discussed above, of US in�ation

during ZLB episodes. Section 5 brie�y discusses how an extended model with liquid government

bonds can account not only for these three features of in�ation, but also for the negative spread

between T-bill and IOR rates observed during ZLB episodes (with the detailed analysis relegated

to the Appendix). Section 6 explores the implications of our model for the normalization and

operational framework of monetary policy, and Section 7 concludes.

2 Benchmark Model

In this section, we present our benchmark model. This model will be extended with household

cash in Appendix D, and with liquid government bonds in Appendix E.

In our benchmark model, monopolistically competitive �rms use labor to produce goods. They

need to pay the wage bill (or some fraction of it) before they can produce and sell their output.

8The two papers have the same local determinacy result when reserves are exogenous, but di�erent ways of
allowing for some endogeneity.

9The endogenous convenience yield generates portfolio-balance e�ects when the money (or bond) supply
changes.

10Andolfatto (2015) also addresses the behavior of US in�ation after the Great Recession, linking low in�ation
to satiation of demand for reserves. Our goal in Section 4 is to generate low in�ation without assuming full
satiation of demand for reserves.
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They borrow the corresponding amount from banks. Banks incur costs making loans, and

holding reserves mitigates these costs. The central bank sets both the interest rate on bank

reserves and the quantity of bank reserves. We merge households and banks in our model, as

there are no frictions between them. We make standard assumptions on utility and production

functions (like monotonicity and concavity), without specifying any functional form.

2.1 Households (Reduced-Form Setup)

Each household consists of production workers and bankers. In this �rst subsection, we start

from households' reduced-form utility function, whose arguments are consumption (ct), hours

worked by production workers (ht), real loans (`t), and real reserves (mt):

Ut = Et

{ ∞∑
k=0

βkζt+k [u (ct+k)− v (ht+k)− Γ (`t+k,mt+k)]

}
, (1)

where β ∈ (0, 1) and ζt denotes a stochastic exogenous discount-factor shock of mean one.

The consumption-utility function u, de�ned over the set of positive real numbers R>0, is twice

di�erentiable, strictly increasing (u′ > 0), strictly concave (u′′ < 0), and satis�es the usual

Inada conditions limct→0 u
′(ct) = +∞ and limct→+∞ u

′(ct) = 0. The labor-disutility function v,

de�ned over the set of non-negative real numbers R≥0, is twice di�erentiable, strictly increasing

(v′ > 0), and weakly convex (v′′ ≥ 0).

The term −Γ(`t,mt) in (1) comes from households acting as bankers. In Subsection 2.5, we will

articulate how bankers produce loans using reserves and their own labor e�ort as inputs, and

we will specify the primitive utility function of households. In the present subsection, we take

a lighter approach to convey intuition: we simply work with the implied utility cost of making

loans Γ (`t,mt), re�ecting bankers' disutility from work. This utility cost of banking is strictly

increasing in loans (Γ` > 0) because bankers have to work harder to make more loans. It is

strictly decreasing in reserves (Γm < 0) because holding reserves reduces the labor e�ort needed

to make a given amount of loans. It is also convex (Γ`` > 0, Γmm > 0, Γ``Γmm − (Γ`m)2 ≥ 0),

and such that Γ`m < 0 (which says that a marginal increase in reserves decreases costs by more

the larger are loans). Finally, it satis�es the limit properties limmt→+∞ Γm(`t,mt) = 0 and

limmt→0 Γ`(`t,mt) = +∞ for any `t ∈ R>0. The former property is a standard Inada condition,

while the latter articulates a sense in which holding reserves is essential for banking.

In addition to making loans and holding reserve balances at the central bank, households trade

bonds bt (in zero net supply). Loans, reserves, and bonds are one-period non-contingent assets.

We let I`t , I
m
t , and It denote the corresponding gross nominal interest rates. We let Pt denote

the price level, and Πt ≡ Pt/Pt−1 the gross in�ation rate. The household budget constraint,

expressed in real terms, is then

ct + bt + `t +mt ≤
It−1

Πt
bt−1 +

I`t−1

Πt
`t−1 +

Imt−1

Πt
mt−1 + wtht + τt, (2)
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where wt represents the real wage and τt captures �rm pro�ts and lump-sum taxes or transfers.

Households choose bt, ct, ht, `t, and mt to maximize their reduced-form utility function (1)

subject to their budget constraint (2), taking all prices (It, I`t , I
m
t , Pt, and wt) as given. Letting

λt denote the Lagrange multiplier on the period-t budget constraint, the �rst-order conditions

of the household optimization problem are

λt = ζtu
′ (ct) , (3)

λt = βItEt
{
λt+1

Πt+1

}
, (4)

λtwt = ζtv
′ (ht) , (5)

ζtΓ` (`t,mt) + λt = βI`tEt
{
λt+1

Πt+1

}
,

ζtΓm (`t,mt) + λt = βImt Et
{
λt+1

Πt+1

}
.

Using (4), we can rewrite the last two conditions as

I`t
It

= 1 +
ζtΓ` (`t,mt)

λt
, (6)

Imt
It

= 1 +
ζtΓm (`t,mt)

λt
. (7)

Condition (6) implies that loans pay more interest than bonds, because the marginal banking

cost is positive (Γ` > 0). Condition (7) implies that reserves pay less interest than bonds,

because they serve to reduce banking costs (Γm < 0). The household optimization problem is

also subject to a standard no-Ponzi-game constraint, and the transversality condition is

lim
k→+∞

Et
{
βt+kλt+kat+k

}
= 0, (8)

where at ≡ bt + `t +mt denotes the household's total assets. The second-order conditions of the

optimization problem are met because of the convexity of Γ.

2.2 Firms

There is a continuum of monopolistically competitive �rms owned by households and indexed

by i ∈ [0, 1]. Firm i uses ht(i) units of labor to produce

yt (i) = f [ht (i)] (9)

units of output. The production function f , de�ned over R≥0, is twice di�erentiable, strictly

increasing (f ′ > 0), and weakly concave (f ′′ ≤ 0); it also satis�es f(0) = 0. To generate a

demand for bank loans, we assume that �rm i has to borrow a fraction φ ∈ (0, 1] of its nominal

wage bill Wtht(i) from banks, at the gross nominal interest rate I`t , before it can produce and

sell its output. Thus, the nominal value of �rm i's loan Lt(i) must satisfy

φWtht (i) ≤ Lt (i) . (10)
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Following Calvo (1983), we assume that at any given date, each �rm (whatever its pricing history

may be) is not allowed to reset its price with probability θ ∈ [0, 1). If allowed to reset its price at

date t, �rm i chooses its new price P ∗t (i) to maximize the expected present value of the pro�ts

that this price will generate:

Et

{
+∞∑
k=0

(βθ)k
λt+k

λtΠt,t+k

[
P ∗t (i) yt+k (i)−

βλt+k+1I
`
t+kLt+k(i)

λt+kΠt+k+1
− [Wt+kht+k (i)− Lt+k(i)]

]}
.

The two negative terms inside the (large) square brackets represent production costs at date

t + k. There are two terms because �rms borrow a fraction of the wage bill: the �rst term

represents the value at date t+ k of loan repayments made at date t+ k+ 1; the second term is

the part of the wage bill at date t+ k that is not borrowed. The optimization is subject to the

production function (9), the borrowing constraint (10), and the demand schedule

yt+k (i) =

[
P ∗t (i)

Pt+k

]−ε
yt+k, (11)

where Πt,t+k ≡ Pt+k/Pt for any k ∈ N, ε > 0 denotes the elasticity of substitution between

di�erentiated goods, and yt ≡ [
∫ 1

0 yt(i)
(ε−1)/(ε)di]ε/(ε−1).

Since the household �rst-order condition (6) implies I`t > It, the borrowing constraint of �rms

(10) is binding. Using the Euler equation (4) and the law of iterated expectations, we can write

the �rst-order condition for the �rm's optimization problem as

Et

{
+∞∑
k=0

(βθ)k
λt+k

λtΠt,t+k

[
P ∗t (i)−

(
ε

ε− 1

)(
φ
I`t+k
It+k

+ (1− φ)

)
Wt+k

f ′ [ht+k (i)]

]
yt+k (i)

}
= 0.

(12)

In the particular case of �exible prices (θ = 0), and in a symmetric equilibrium (with P ∗t (i) = Pt

and ht(i) = ht), this �rst-order condition becomes

Pt =
ε

ε− 1

[
φ
I`t
It

+ (1− φ)

]
Wt

f ′ (ht)
. (13)

2.3 Government

For simplicity, our benchmark model abstracts from government expenditures and government

bonds. Introducing government expenditures into the model would not a�ect our results in any

substantive way as long as these expenditures do not enter households' utility function or enter

it in a separable way (as is standard in the literature). Government bonds would not matter at

all if they served only as a store of value, but may matter if they provide liquidity services; we

will introduce liquid government bonds into the model in Section 5 and Appendix E.

The central bank has two independent instruments: the (gross) nominal interest rate on reserves

Imt , and the stock of nominal reserves Mt. Absent government bonds, the central bank injects

reserves via lump-sum transfers (Tt). The nominal stock of reserves thus evolves according to

Mt = Imt−1Mt−1 + Tt. (14)
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To capture a lower bound on Imt in a simple and stark way, we assume that vault cash (with no

interest payments) is a perfect substitute for deposits at the central bank in terms of reducing

banking costs. This introduces a zero lower bound (ZLB) for the net nominal IOR rate Imt − 1

in our model.11 In an equilibrium with Imt > 1, banks will hold no cash. In an equilibrium with

Imt = 1, the composition of reserve balances will be indeterminate, but also inconsequential; so,

we will assume that banks hold no cash in equilibrium.

2.4 Market Clearing

The bond-market, reserve-market and goods-market clearing conditions are respectively

bt = 0, (15)

mt =
Mt

Pt
, (16)

ct = yt. (17)

2.5 Households (Primitive Setup)

In this subsection, we brie�y describe the primitive setup for households that leads to the

reduced-form utility function (1). This brief description will be useful when we calibrate the

model later in the paper (in Subsection 4.1). In this primitive setup, households get utility from

consumption (ct) and disutility from labor (ht for production workers, hbt for bankers). Their

intertemporal utility function is

Ut = Et

{ ∞∑
k=0

βkζt+k

[
u (ct+k)− v (ht+k)− vb

(
hbt+k

)]}
.

Like v, the labor-disutility function vb is de�ned over R≥0, twice di�erentiable, strictly increasing

(vb′ > 0), and weakly convex (vb′′ ≥ 0). Bankers use their own labor hbt and (real) reserves at

the central bank mt to produce (real) loans `t according to the technology

`t = f b
(
hbt ,mt

)
.

The production function f b, de�ned over (R≥0)2, is twice di�erentiable, strictly increasing (f bh >

0 and f bm > 0), homogeneous of degree d ∈ (0, 1], and such that f bhh < 0, f bmm < 0, and f bhm ≥ 0.

These assumptions imply that f b is concave, as we show in Appendix A.1. In addition, we

assume that for any hbt ∈ R≥0, limmt→+∞ f
b
m(hbt ,mt) = 0 and limmt→0 f

b
h(hbt ,mt) = 0. The

former assumption is a standard Inada condition, while the latter articulates a sense in which

holding reserves is essential for banking.

11A more realistic model in which vault cash is substitutable to some extent for deposits at the central bank
could imply a negative lower bound for the net nominal IOR rate. Whether the e�ective lower bound is zero or
negative does not matter for most of our analysis below.
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The function f b is, of course, a convenient short cut to capture the role of bank reserves − which

in reality may come, for example, from a maturity mismatch between banks' assets and liabilities.

For the sake of generality, we do not impose any functional form for f b. Examples of functional

forms satisfying all the assumptions listed above include, in particular, constant-elasticity-of-

substitution (CES) functions, and more generally (but not exclusively) CES functions raised to

a power d such that max[(s − 1)/s, 0] < d ≤ 1, where s denotes the elasticity of substitution.

Moreover, we could relax some assumptions to some extent without a�ecting our results − for

example, the assumption that labor and reserves are complements (f bhm ≥ 0), or the assumption

of decreasing or constant returns to scale (d ≤ 1), which we make to simplify our analysis.12

Since f bh > 0, we can invert the production function of bankers f b and get their labor hours as

a function of loans and reserves: hbt = gb(`t,mt), where gb is implicitly and uniquely de�ned by

`t = f b[gb(`t,mt),mt]. Using this result to eliminate hbt in the primitive utility function, we get

the reduced-form utility function (1), with the utility cost of banking

Γ (`t,mt) ≡ vb
[
gb (`t,mt)

]
.

We establish some useful properties of the function gb in Appendix A.2, and we show in Appendix

A.3 that the function Γ has all the properties mentioned in Subsection 2.1.

3 In�ation at the ZLB

In this section, we show that our benchmark model has a unique steady state under con-

stant monetary-policy instruments, and delivers local-equilibrium determinacy under exogenous

monetary-policy instruments. We explain how this determinacy result can account for two fea-

tures of US in�ation during ZLB episodes: no signi�cant de�ation, and little in�ation volatility.

At the end of the section, we brie�y discuss (relegating the detailed analysis to Appendices C

and D) how this determinacy result is essentially robust to the relaxation of two simplifying

assumptions in turn: the exogeneity of nominal reserves, and the absence of household cash.

3.1 Unique Steady State

For our steady-state analysis, we assume that the IOR rate Imt is permanently pegged (Imt =

Im ≥ 1), the stock of nominal reserves is constant over time (Mt = M > 0), and there are no

discount-factor shocks (ζt = 1).13 In any steady state, real reserves are constant over time (by

de�nition of a steady state), and so are nominal reserves (by assumption); therefore, prices are

also constant over time, and the �exible-price version of �rms' �rst-order condition (13) holds.

12In an earlier version of the paper, we allowed for increasing returns to scale (d > 1) when the function fb is
iso-elastic.

13Our results would be unchanged if we assumed that the stock of nominal reserves grows or shrinks at a
constant rate and that non-optimized prices are indexed to steady-state in�ation.
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We �rst use the equilibrium conditions (3), (5), (9), (10) holding with equality, and (17) to

express steady-state loans ` as a function of steady-state employment h:

` = L (h) ≡ φhv′ (h)

u′ [f (h)]
. (18)

The function L, de�ned over R>0, is strictly increasing (L′ > 0), with limh→0 L(h) = 0 and

limh→+∞ L(h) = +∞. The reason is simply that loans are proportional to the wage bill (wage

times employment), and the wage is increasing in employment.

Next, in Appendix A.4, we show that the equilibrium conditions (3), (5), (6), (9), (13), (17),

and (18) implicitly and uniquely de�ne a function M relating steady-state real reserves m to

steady-state employment h:

m =M (h) . (19)

This function is strictly increasing (M′ > 0). The reason is that in any steady state, �rms' pro�t

maximization makes their real marginal cost equal to the inverse of their markup (ε−1)/ε; since

real marginal cost depends positively on employment and negatively on real reserves (through

borrowing costs), real reserves need to react positively to employment to keep real marginal cost

equal to (ε− 1)/ε. The functionM is de�ned over (0, h̄), where the upper bound h̄ > 0 is the

limit value of employment when real reserves tend to in�nity, and we have limh→h̄M(h) = +∞.

Since the steady-state price level is constant over time, households' �rst-order condition for

bonds (4) implies that the steady-state interest rate on bonds I is equal to 1/β. Using this

result, as well as (3), (9), (17), (18), and (19), we rewrite households' �rst-order condition for

reserves (7) at the steady state as

F (h) ≡ Γm [L (h) ,M (h)]

u′ [f (h)]
= − (1− βIm) . (20)

The function F is de�ned over (0, h̄). We show in Appendix A.5 that it is strictly increasing

(F ′ > 0), with limh→0F(h) = −∞ and limh→h̄F(h) = 0. So, for any policy setting the IOR

rate below the interest rate on bonds (Im < I = 1/β), we have a unique steady state. When

Im ≥ I, there is no equilibrium because banks would be tempted to issue in�nite amounts of debt

and deposit the proceeds at the central bank. When Im < I, households' �rst-order condition

for reserves (7) implies that the convenience yield of bank reserves is positive (Γm < 0), and

this basically pins down the demand for real reserves. Since the nominal stock of reserves is

exogenous, pinning down the demand for real reserves also pins down the price level.

Our model, thus, rules out the possibility of de�ationary equilibrium paths analyzed by Benhabib

et al. (2001a, 2001b). These paths are associated, in standard monetary-policy models, with an

unintended de�ationary steady state and a permanently binding ZLB constraint. By contrast,

since the central bank sets the money supply in our model, we have a unique steady state

(provided that 1 ≤ Im < 1/β), and in�ation is equal to the money growth rate at this steady

12



state.14

Note, �nally, that steady-state employment h = F−1[−(1− βIm)] is increasing in the IOR rate

Im. This is because an increase in Im reduces the opportunity cost of holding reserves I/Im.

The lower opportunity cost increases real reserves, which in turn decreases banking costs and

hence borrowing costs, which in turn stimulates employment and output.

3.2 Unique Local Equilibrium

We now consider a monetary policy setting its instruments Imt and Mt exogenously in the

neighborhood of some constant values Im ∈ [1, 1/β) and M > 0. In Appendix B.1, we log-

linearize the equilibrium conditions of the model around its unique steady state and get the

following IS equation, Phillips curve, and reserves-demand equation:

ŷt = Et {ŷt+1} −
1

σ
(it − Et {πt+1} − rt) (21)

πt = βEt {πt+1}+ κ (ŷt − δmm̂t) , (22)

m̂t = χyŷt − χi (it − imt ) , (23)

where variables with hats denote log-deviations from steady-state values, πt ≡ log Πt, it ≡ Ît,

imt ≡ Îmt , rt ≡ ζ̂t − Et{ζ̂t+1}, and all the parameters (σ, β, κ, δm, χy, χi) are positive.

The IS equation (21) is exactly the same as in the basic NK model, except that it is not the

policy rate in our model. This IS equation directly comes from the consumption Euler equation

(3)-(4) and the goods-market-clearing condition (17). The Phillips curve (22) di�ers from its

counterpart in the basic NK model in two ways. First, it involves real reserves m̂t, because they

reduce banking costs, which in turn lowers the borrowing costs of �rms and hence their marginal

cost of production. The parameter δm thus depends (positively) on |Γ`m|. Second, the slope κ of
the Phillips curve depends (positively) on Γ``, as an increase in output ŷt raises �rms' marginal

cost of production also through the resulting increase in loans and banking costs. Finally, the

reserves-demand equation (23) states that the demand for reserves depends positively on loans

and hence output, and negatively on the marginal opportunity cost of holding reserves, measured

by the spread between the IOR rate and the interest rate on bonds. The parameter χy thus

depends positively on |Γ`m|, and the parameter χi negatively on Γmm.

Under permanently exogenous monetary-policy instruments imt and M̂t, and given the identities

m̂t = M̂t − P̂t and πt = P̂t − P̂t−1, Equations (21)-(23) lead to a third-order dynamic equation

in the price level. More speci�cally, this equation relates P̂t to Et{P̂t+2}, Et{P̂t+1}, P̂t−1,

and exogenous terms. We show in Appendix B.2 that the characteristic roots of this dynamic

equation are three real numbers ρ, ω1, and ω2 such that 0 < ρ < 1 < ω1 < ω2. With one

14Our result about steady-state uniqueness holds under an IOR-rate peg; our result about steady-state in�ation
equal to money growth holds more generally under any IOR-rate rule (simply because real reserves are constant
over time in any steady-state equilibrium).
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characteristic root inside the unit circle (ρ) for one predetermined variable (P̂t−1), thus, the

dynamic equation satis�es Blanchard and Kahn's (1980) conditions and has a unique bounded

solution in P̂t. In Appendix B.2, we solve for this unique solution and derive the implied values

of in�ation πt and output ŷt. We get the following expression for in�ation:

πt = − (1− ρ) P̂t−1 +
Et

ω2 − ω1

{
+∞∑
k=0

(
ω−k−1

1 − ω−k−1
2

)
Zt+k

}
, (24)

where

Zt ≡
−κ
βσ

(imt − rt) +

[
1

σχi
−
(

1 +
χy
σχi

)
δm

]
κ

β
M̂t +

δmκ

β
Et
{
M̂t+1

}
.

3.3 Implications For In�ation at the ZLB

We now use the determinacy result just obtained to explain how our model, unlike standard

NK models, can account for two features of US in�ation during ZLB episodes: no signi�cant

de�ation, and little in�ation volatility.

At the ZLB, the policy rate is pegged and is therefore exogenous. In our model, permanently

exogenous policy instruments deliver determinacy. In our unique equilibrium, the sum in (24)

involves ω−k1 and ω−k2 terms with ω1 > 1 and ω2 > 1. So, the later shocks are expected to occur,

the smaller their e�ects on current in�ation. More speci�cally, the e�ects on in�ation at date t

of shocks occurring at date t+ k and announced at date t decay at an exponential rate with the

horizon k.

In standard NK models, by contrast, a permanently exogenous policy rate leads to indetermi-

nacy. Determinacy can be, and typically is, obtained by assuming that the central bank will

switch, after a temporary ZLB episode, to a policy-rate rule that sets a nominal anchor (e.g., a

Taylor rule like it = φπt with φ > 1). In Diba and Loisel (2021), drawing on earlier contributions

to the literature, we show that, as a result, the implied weights on anticipated future shocks like

Zt+k in (24) do not decay, but instead grow exponentially with the horizon k, regardless of the

type of shock considered (preference, supply, monetary, �scal, etc.).

This key di�erence implies that de�ation can be arbitrarily large and volatile during a ZLB

episode in standard NK models, but not in our model. To see this, consider, in our model,

a temporary ZLB episode caused by a negative discount-factor shock between dates 0 and T

(rt < 0 for 0 ≤ t ≤ T ). We assume that cutting down the IOR rate to the ZLB only partially

o�sets this shock (imt − rt = z∗ > 0 for 0 ≤ t ≤ T ). For simplicity, we also assume that the

price level is at its steady-state value before the ZLB episode (P̂−1 = 0), reserves-supply policy

is neutral during this episode (M̂t = 0 for 0 ≤ t ≤ T ), and monetary policy is neutral afterwards

(imt − rt = M̂t = 0 for t ≥ T + 1). Under these assumptions, the exogenous driving term Zt

takes the value −κz∗/(βσ) between dates 0 and T , and the value 0 afterwards. Therefore, we
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can then rewrite (24) at date 0 as

π0 =
−κz∗

βσ (ω2 − ω1)

T∑
k=0

(
ω−k−1

1 − ω−k−1
2

)
.

In Diba and Loisel (2021), we show that π0 has a similar expression in the basic NK model; the

key di�erence is that 0 < ω1 < 1 < ω2 in the basic model, while 1 < ω1 < ω2 in our model. So,

in the basic NK model, the de�ation rate (−π0) grows exponentially with the duration T of the

ZLB episode. In our model, by contrast, it converges to the �nite value κz∗/[βσ(ω1−1)(ω2−1)]

as T → +∞.15 Similarly, in the basic NK model, even small changes in the expected duration

T of the ZLB episode can have very large e�ects on in�ation π0. In our model, by contrast,

small changes in T will have small e�ects on π0. Thus, unlike standard NK models, our model

predicts no severe de�ation and little in�ation volatility during a temporary ZLB episode.

3.4 Robustness Analysis: Reserves-Supply Rule and Household Cash

In this section, we have shown that our benchmark model delivers local-equilibrium determi-

nacy under exogenous monetary-policy instruments, and we have used this determinacy result

to explain the low volatility of in�ation and the absence of signi�cant de�ation at the ZLB. The

analysis in this section rests on two simplifying assumptions: the exogeneity of nominal reserves,

and the absence of household cash. In Appendix C, as a robustness check, we relax our assump-

tion of an exogenous nominal stock of bank reserves, and consider instead a �quantitative-easing

rule� setting the nominal stock of bank reserves as a function of output and the price level.

We �nd that determinacy no longer obtains for all parameter values, but we argue that it still

obtains for all reasonable parameter values. In Appendix D, as another robustness check, we

introduce household cash into our benchmark model through a cash-in-advance constraint. We

show that determinacy still obtains in the resulting model under an exogenous IOR rate and

an exogenous monetary base (which is now made of bank reserves and household cash), except

again for implausible calibrations.

4 Numerical Simulation of QE policies

In this section, we conduct a non-linear numerical simulation of QE policies in our benchmark

model. Our main goal is to illustrate how our model, despite its monetarist features, can explain

why no signi�cant in�ation was observed in the US following QE policies. More speci�cally, we

show that large monetary expansions can have very small in�ationary e�ects in our model if: (1)

the demand for reserves is close to satiation (in the sense that Im is close to I, or equivalently

Γm is close to 0), and (2) the monetary expansion is perceived as temporary. To make this

15In Appendix B.4, we illustrate numerically these contrasting implications of the basic NK model and our
model. Under our calibration of the basic NK model, the de�ation rate (−π0) reaches large values even for
relatively small expected ZLB durations, e.g. 21% per year for an expected ZLB duration of two years.

15



point, we �rst calibrate our model to a steady-state equilibrium that matches some features of

the US economy in November 2010, leading up to QE2; then, we consider the e�ects of large

monetary expansions, from one up to several times QE2.

4.1 Calibration

For the calibration, we consider iso-elastic functional forms:

u (ct) ≡ (1− σ)−1 (ct)
1−σ ,

v (ht) ≡ V (1 + η)−1 (ht)
1+η ,

vb
(
hbt

)
≡ Vb (1 + η)−1

(
hbt

)1+η
,

f (ht) ≡ A (ht)
α ,

f b
(
hbt ,mt

)
≡ Ab

(
hbt

)1−ς
(mt)

ς ,

where σ > 0, V > 0, η ≥ 0, Vb > 0, A > 0, 0 < α ≤ 1, Ab > 0, and 0 < ς < 1. These

speci�cations imply

gb (`t,mt) = A
−1
1−ς
b (`t)

1
1−ς (mt)

−ς
1−ς ,

Γ (`t,mt) = Vb (1 + η)−1A
−(1+η)

1−ς
b (`t)

1+η
1−ς (mt)

−ς(1+η)
1−ς .

We need to calibrate the parameters characterizing these functional forms (σ, V , η, Vb, A, α,

Ab, ς), as well as the parameters β, ε, φ, θ, and Im. However, we have three degrees of freedom

in our calibration, as we can freely pick units for output yt and labor inputs (ht and hbt). So,

without any loss in generality, we can set arbitrarily any three of the following four parameters:

A, Ab, V , and Vb. We choose to normalize A, Ab, and V to one.

We set standard values for the parameters σ, η, α, ε, and θ that appear in standard models.

The utility function is logarithmic in consumption (σ = 1) and has a unitary Frisch elasticity

of labor supply, for production workers as well as bankers (η = 1). The elasticity of output

with respect to the labor input is α = 0.67. For the price-setting nexus, we set the elasticity

of substitution across di�erentiated goods to ε = 6 and the Calvo price-rigidity parameter to

θ = 0.67 (corresponding to �three-quarter price rigidity�). In addition, we assume that �rms

borrow the entire wage bill (φ = 1), as in Christiano et al. (2005) and Ravenna and Walsh

(2006). None of these values plays a major role in our simulation results.

We set the net IOR rate Im− 1 to 25 basis points per annum (the value prevailing in November

2010 in the US). The spread I − Im between the interest rate on bonds and the IOR rate

plays a central role in our model. Unfortunately, this spread is not easy to calibrate because

I is a shadow rate that is not directly observed (as our hypothetical bonds provide no non-

pecuniary services and are in zero net supply).16 Nagel (2016) estimates the liquidity premium

16Treating It as an unobservable shadow rate has precedents in the literature (e.g., Del Negro et al., 2017,
Herrenbrueck, 2019, Geromichalos and Herrenbrueck, 2022).
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on US Treasury bills using the interest rate on three-month general collateral (GC) repurchase

agreements as the rate on a risk-free but illiquid asset.17 The (gross) GC repo rate IGC is not a

suitable measure of our shadow rate I because the former can re�ect a convenience yield, unlike

the latter. Speci�cally, participating banks are typically lenders in the GC repo transaction

and bene�t from borrowing the securities used as collateral (as this gives them the certainty of

supply of collateral for three months). So, denoting the convenience yield of borrowed Treasury

securities by Cb, the convenience yield of holding Treasury bills outright by Co, and the (gross)

T-bill yield by ITB, we have

I − IGC = Cb, I − ITB = Co, and IGC − ITB = Co − Cb.

The repo-T-bill spread IGC − ITB (reported on Stefan Nagel's website) stood at 8 basis points

per annum in November 2010. If we assume, for example, that the convenience yield of borrowed

Treasury securities Cb is half as large as the convenience yield of T-bills held outright Co, we get

a value of 16 basis points per annum for Co. Adding the average net T-bill yield in November

2010 (14 basis points per annum) to this estimate of the I − ITB spread, we get a net shadow

rate I − 1 of 30 basis points per annum. In this case, our estimate for the I − Im spread would

be 5 basis points per annum. Alternatively, we could get larger (smaller) estimates of the I−Im
spread by assuming that the convenience yield of borrowed Treasury securities Cb is more (less)

than half as large as the convenience yield of T-bills held outright Co. As we will see below,

smaller I − Im spreads are more favorable to our main point in this section. To err on the

conservative side, thus, we set our benchmark value for the I − Im spread to 10 basis points per

annum, and we consider alternative values of 5 and 20 basis points per annum. Since we have

no in�ation in the steady state, our benchmark value for the net shadow rate I − 1 (35 basis

points per annum) pins down the discount factor to β = 1/I = 0.999 on a quarterly basis.

We set the remaining two parameters, ς and Vb, so as to reach the following two steady-state

targets: (i) the net interest rate on bank loans I`−1 is 3.25% per annum (the prime loan rate in

November 2010 in the US); and (ii) the ratio of bank reserves to loans is m/` = 1/9 (the ratio of

total reserves to bank credit of all commercial banks in November 2010 in the US). In Appendix

A.6, we show how these targets pin down ς and Vb; we get ς = 0.0039 and Vb = 0.019. Our

simulation results, reported and discussed in the next subsection, are not sensitive to plausible

variations in the values we pick for these targets.

4.2 Simulations

To assess the quantitative e�ects of large monetary expansions, we need to work with the non-

linear version of our model. We use the �simul� command of Dynare for our non-linear simulation

17The associated loans are risk-free because they are fully collateralized with Treasury securities; they have
very little liquidity, although one side of the transaction (or both sides) may have an option to terminate it
earlier.
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Figure 1 � E�ects of temporary balance-sheet expansions
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Note: The �gure displays the e�ects of announcing at date 1 a temporary balance-sheet expansion
(left panel) on the spread (middle panel) and in�ation (right panel) between dates 1 and 30.

of a perfect-foresight equilibrium that asymptotically converges to the steady-state equilibrium.

Figure 1 shows the e�ects of four alternative monetary expansions. One, like QE2, raises the

balance-sheet size from an already large value ($1 trillion) to a substantially larger one ($1.6

trillion) in the course of 3 quarters (solid line with asterisks in Figure 1). The others raise the

balance-sheet size by two, three, or four times as much, i.e. from $1 to $2.2, $2.8, or $3.4 trillion

(solid, dashed, and dotted lines in Figure 1). All these monetary expansions are temporary: the

balance-sheet size rises over 3 quarters, remains at its new value for 15 quarters, and goes back

to its initial value over 3 quarters.

As shown in Figure 1, the �single QE2� expansion makes the It − Imt spread fall from 10 to 6.2

basis points per annum, and raises annualized in�ation by only 18 basis points upon impact.

And the �multiple QE2� expansions do not have much larger in�ationary e�ects: following the

�double, triple, and quadruple QE2� expansions, the spread falls to 4.5, 3.5, and 2.9 basis points,

and in�ation rises by only 27, 32, and 35 basis points respectively. These results illustrate

the strongly decreasing returns to scale of quantitative easing in our setup. These strongly

decreasing returns to scale are also apparent in Table 1 below, which extends the results to still

larger expansions (up to 32 times QE2).

Our results are not sensitive to the values we assume for most of our parameters (although we

could make the impact e�ects on in�ation even smaller if we raised the price-rigidity parameter,

say, to θ = 0.75). Only two features really matter for the results.

First, our simulations start with a small spread It − Imt . This re�ects a presumption that the

already large level of reserve balances in the US prior to QE2 had �nearly satiated� the demand

for real reserves (in the sense of bringing Γm close to 0). In this case, as the reserves-demand

equation (7) makes clear, a large increase in nominal-reserves supply Mt can be absorbed by a

small drop in the spread It − Imt , without changing the price level Pt by much. If we set the
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steady-state spread I − Im to 5 basis points (instead of 10), we get even closer to satiation of

demand for reserves, and the in�ationary impact of our �single QE2� expansion drops from 18

to 9 basis points. Conversely, if we moved further away from satiation and set I − Im to 20

basis points (instead of 10), the in�ationary impact of our �single QE2� expansion would rise

from 18 to 37 basis points. In short, the in�ationary impact moves roughly one-for-one with the

steady-state spread for plausible values of the latter.

The second assumption that matters for our low-in�ation result is that the balance-sheet expan-

sion is expected to be temporary. To see why this assumption matters, note that in the extreme

case of a permanent increase in nominal reserves, our model would imply a proportional price

increase in the long term. The reason is that the central bank does not change Im in our QE

experiment, and our representative-consumer setup pins down I = 1/β; so, the steady-state

spread I − Im cannot shrink to raise the demand for real reserves if our monetary expansion

is permanent; and the price level has to increase eventually by the same factor as the nominal

stock of reserves, so as to leave the steady-state real reserve balances unchanged. To o�set the

long-term e�ect of a permanent increase in the supply of reserves on the price level, the central

bank would have to raise the IOR rate in order to stimulate demand for reserves.

Our assumption that, as of 2010, the unusual monetary expansion was not expected to last

more than 5 years does not seem unreasonable to us, in light of commentary on how the crisis

was not expected to last as long as it did. At any rate, the in�ationary e�ects of temporary

monetary expansions that are expected to last reasonably longer than 5 years are also modest

in our model. Table 1 shows the results for expansions that are expected to last 10 or 20 years

(instead of 5). For our �single QE2� expansion, extending the duration from 5 to 10 years raises

the impact e�ect on annualized in�ation from 18 to 40 basis points. Although our numerical

simulations are non-linear, the log-linear approximation (24) of the solution for the in�ation

rate can o�er a mechanical explanation for this result. Our calibration makes the root ω1 very

close to 1 (equal to 1.0003), and the root ω2 substantially larger (equal to 1.42); so, the factor

ω−k−1
1 − ω−k−1

2 on the right-hand-side of (24) is close to 1 for a large range of horizons k.18

Doubling the expected duration of the QE experiment from 5 to 10 years doubles the number

of non-zero terms on the right-hand-side of (24); given that the relevant �discount factor� is

close to 1, this roughly doubles the in�ationary impact. As Table 1 illustrates, the response

of the in�ationary impact to the expected duration of the expansion remains approximately

one-for-one at least for expansion sizes up to 32 times QE2 and for expansion durations up to 20

years. Thus, forward guidance about the duration of the expansion is a powerful tool to control

in�ation in our calibrated model.

In retrospect, the QE2 expansion was not reversed in 10 years, and we saw much larger balance-

sheet expansions during QE3 and in response to the COVID crisis. The Fed's balance sheet has

18This result holds over the range of plausible values for the steady-state spread I− Im: ω1 moves from 1.0001
to 1.0005 − and thus remains very close to 1 − as the spread moves from 5 to 20 basis points.
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Table 1 � In�ationary impact (in basis points per annum) of balance-sheet expansions

5 years 10 years 20 years

1 × QE2 18 40 84
2 × QE2 27 59 122
4 × QE2 35 76 157
8 × QE2 42 90 184
16 × QE2 46 98 202
32 × QE2 48 104 212

Note: the table displays the increase in in�ation, expressed in basis points per annum, at the start of
an unexpected balance-sheet expansion of size 1 to 32 times QE2 and of duration 5, 10, or 20 years.

grown to about $9 trillion during this process. What insights does our model o�er about the

in�ationary e�ects of QE? We discuss our results and express our views (which admittedly go

beyond the formal results presented in this paper) in the following subsection.

4.3 Discussion

One way to reconcile large monetary expansions with low in�ation, in the aftermath of the Great

Recession, is to assume that demand for money was satiated, and total public-sector liabilities

were not expected to grow rapidly.19 Our goal, however, is to account for low in�ation while

preserving local-equilibrium determinacy. In contrast to a model with full satiation of money

demand, our model views in�ation through the lens of the supply and demand for money. A

permanent increase in the money supply is in�ationary, according to our model, unless it is

accompanied by an increase in money demand.

Our simulations, however, suggest that transitory increases in the money supply may have small

in�ationary e�ects when the spread between the IOR rate Im and the (unobservable) shadow rate

I is small.20 Under our iso-elastic functional forms, the semi-elasticity of demand for reserves is

inversely related to this spread. So, our simulations suggest that the in�ationary e�ects of QE

are small when the semi-elasticity of demand for reserves is large (i.e. when the function Γm

in our model is fairly �at). In this case, small changes in the spread (the opportunity cost of

holding reserves) can absorb large changes in the supply of reserves. The fact that the relevant

spread is not observable is a limitation of our setup. As we noted, however, our simulations

support our claims for spread values between 5 and 20 basis points per annum.

Our simulations start with the large balance sheet prevailing just before QE2. We don't think

our model can explain why the QE1 expansion was not in�ationary: it seems hard to argue that

19A number of earlier contributions (e.g., Andolfatto, 2015) present models in which in�ation is pinned down
by the growth rate of total public-sector liabilities, when the interest rates on money and bonds are equalized.

20The key role played by this shadow rate in our model is not a consequence of our assumption that households
have access to bonds providing no non-pecuniary services and being in zero net supply. The exact same shadow
rate would appear in Equation (7) even if we assumed that households do not have access to such bonds.
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the function Γm was �at starting with reserve balances around $45 billion, as was the case in

2008 just before QE1. Our view is that the QE1 expansion was primarily decided in response

to, and largely absorbed by, an increase in demand for bank reserves. When the federal-funds

market collapsed, and the Fed introduced interest payment on reserves in October 2008, holding

reserve balances at the Fed largely replaced transactions in the interbank market and the use

of inside assets (like commercial paper) for liquidity management. Subsequently, the liquidity-

coverage requirements associated with Basel III and the Fed's stress tests substantially increased

the demand for reserves by US banks. This suggests that part of the balance-sheet expansions

would eventually not raise the price level even if they came to be viewed as permanent.

Our results do not imply that large and repeated balance-sheet expansions are always benign.

Balance-sheet expansions can generate larger in�ationary pressures in our setup if they are not

expected to be reversed anytime soon or if the I − Im spread is large. Viewed through the

lens of our model, it seems possible that an increase in the expected duration of balance-sheet

expansions contributed to the surge in US in�ation in the aftermath of the COVID crisis; and

that a higher value of expected in�ation (due to adverse supply shocks) made these balance-sheet

expansions more in�ationary via the Fisher e�ect raising I, for a given (constant) value of Im.

Our observations suggest that in the aftermath of large and persistent balance-sheet expansions,

central banks should be mindful of changes in the expected duration of these expansions, or

changes in economic conditions that can a�ect the shadow rate I, as these changes can have

sizeable e�ects on in�ation. To stabilize in�ation, central banks may respond to these changes

by communicating about the intended duration of the expansions, or by modifying the IOR rate

in order to adjust the demand for reserves.

5 Extension With Liquid Government Bonds

In the preceding two sections, we have shown that our benchmark model can broadly account

for three key observations about US in�ation during ZLB episodes (no signi�cant de�ation, little

in�ation volatility, and no signi�cant in�ation following QE policies). These results rest on the

assumption that demand for bank reserves got close to satiation, but did not reach full satiation,

i.e. that bank reserves carried a small but positive convenience yield (Imt < It and Γm > 0).

In Appendix E, we address an important argument that goes against our non-satiation view.

This argument is the fact that T-bill returns were often below the IOR rate during ZLB episodes.

We do not think this fact contradicts our claim that reserves still had a positive marginal con-

venience yield during these episodes. The lower T-bill returns, we argue, could re�ect strong

demand by non-bank entities − using T-bills as collateral or international reserve asset, for

instance. We formalize our counter-argument by introducing government bonds providing liq-

uidity services into our benchmark model. We show that our model with liquid bonds has an

equilibrium in which the return on government bonds is below the IOR rate, while demand for
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bank reserves is not satiated. Moreover, this equilibrium of our model with liquid bonds coin-

cides with the equilibrium of our benchmark model (without liquid bonds), in the sense that all

the endogenous variables that are common to both models, except the lump-sum transfer Tt,

take the same equilibrium values. So, all the results that we have obtained in our benchmark

model in Sections 3 and 4 still hold in our model with liquid bonds. Thus, our model with liq-

uid bonds can account not only for the negative spread between T-bill and IOR rates observed

during ZLB episodes, but also for the three key features of in�ation during these episodes.

6 Normalization and Operational Framework of Monetary Policy

In the preceding sections, we have used our model to explain some key observations about

in�ation and money-market rates during ZLB episodes. In the present section, we now explore

the implications of our model for the normalization and the operational framework of monetary

policy.

6.1 Normalization of Monetary Policy

The issue of monetary-policy normalization, i.e. raising policy rates from the ZLB and shrinking

the size of the central bank's balance sheet, has received considerable attention since the 2008-

2015 ZLB episode. After this episode, the Fed started to normalize its monetary policy, raising

the IOR rate from December 2015 to December 2018 and reducing the size of its balance sheet

from October 2017 to August 2019, before reversing course due to the COVID crisis. Since

March 2022, the Fed has raised again the IOR rate, in a high-in�ation context.

Our model provides a simple framework to think about the e�ects of normalizing monetary

policy. In particular, our model has unambiguous implications about the e�ects of normalizing

monetary policy on in�ation. More speci�cally, in our log-linearized model under exogenous

monetary-policy instruments (studied in Section 3), current and expected future IOR-rate hikes

and balance-sheet contractions always exert de�ationary pressures. To establish this result, we

use the de�nition of the exogenous driving term Zt (as a function of imt − rt, M̂t, and M̂t+1) to

rewrite (24) as

πt = − (1− ρ) P̂t−1 +
(1− δmχy)κ

βσχi (ω1 − 1) (ω2 − 1)
M̂t−1

+
κ

β (ω2 − ω1)
Et

{
− 1

σ

+∞∑
k=0

(
ω−k−1

1 − ω−k−1
2

) (
imt+k − rt+k

)
+

+∞∑
k=0

[(
1− δmχy
σχi

)(
ω−k1

ω1 − 1
− ω−k2

ω2 − 1

)
+ δm

(
ω−k1 − ω−k2

)]
µ̂t+k

}
, (25)

where µ̂t = M̂t − M̂t−1 denotes the log-deviation of the gross growth rate of nominal reserves

µt ≡ Mt/Mt−1 from its steady-state value 1. Since ω2 > ω1 > 1 and δmχy < 1 (as shown in
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Appendix B.3), the coe�cient of imt+k in (25) is negative, and the coe�cient of µ̂t+k is positive.

Therefore, announcing at date t a positive imt+k or a negative µ̂t+k, for any k ≥ 0, lowers current

in�ation πt.

So, in particular, our model does not share the Neo-Fisherian implication of some equilibria in

NK models − discussed in Schmitt-Grohé and Uribe (2017) and Bilbiie (2022), among others

− that suggest interest-rate hikes may serve to raise in�ation to target in an environment with

de�ationary pressures. Our result, of course, is about IOR-rate hikes, rather than hikes in the

interest rate appearing in the IS equation of the NK models analyzed in the literature.

Note that we have obtained this result (that monetary-policy normalization always has de�a-

tionary e�ects) only because the �unstable eigenvalues� of the dynamic system, ω1 and ω2, are

always positive real numbers. If ω1 and ω2 had instead been negative real numbers or conjugate

complex numbers, then in�ation would still have been characterized by (25), but the sign of

the coe�cients of imt+k and µ̂t+k in (25) would have then depended on the horizon k. Expected

future IOR-rate hikes would have been de�ationary for some hike horizons, and in�ationary for

others; and similarly for expected future balance-sheet contractions. In Diba and Loisel (2021),

we show that other, less structured monetary models, in particular the familiar MIU model with

separable or non-separable utility, allow for conjugate complex eigenvalues, unlike our model.

Thus, the additional structure brought by our model is key to obtain our unambiguous result

about the de�ationary e�ects of monetary-policy normalization.

6.2 Floor System

How will monetary policy be conducted away from the ZLB, after it is normalized? Over the

past few years, the Fed has repeatedly stated its intention to keep the balance sheet large (or

let it shrink slowly and predictably over time as central-bank assets mature), without actively

managing the quantity of reserves, and to set the interest rate on reserves (and, perhaps, the

reverse-repo rate) depending on the state of the economy (see, e.g., Federal Open Market Com-

mittee, 2019). This operational framework is often referred to as a ��oor system.�

In this subsection, we investigate the consequences of a �oor system for local-equilibrium deter-

minacy in our model. We consider a �oor system in which policy sets the size of the balance

sheet exogenously and sets the IOR rate depending on the state of the economy. We show that

if the IOR rate reacts only to current in�ation, then we get determinacy for any non-negative

response, in contrast to what we get in standard NK models; and if the IOR rate also reacts to

current output, determinacy conditions remain quite lax.

More speci�cally, we consider a �oor system under which the central bank sets the stock of

nominal reserves Mt exogenously (around a constant value M > 0, as previously) and sets the
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IOR rate Imt according to the Taylor rule

Imt = R (Πt, yt) ,

where the function R, from R2
>0 to [1,+∞), is di�erentiable and non-decreasing in Πt and yt

(i.e. RΠ ≥ 0 and Ry ≥ 0). Under this �oor system, the set of steady states is characterized by

F (h) = −{1− βR [1, f (h)]} ,

which corresponds to (20) with Im replaced by R[1, f(h)]. Given the properties of the function

F , a su�cient condition for existence of a steady state (which is also a necessary condition for

existence and uniqueness of a steady state) is

R
[
1, f

(
h̄
)]
<

1

β
.

Log-linearizing the model around a steady state, we get the same IS equation (21), Phillips

curve (22), and reserves-demand equation (23) as previously, plus now the Taylor rule

imt = rππt + ryŷt, (26)

where rπ ≡ RΠ/R ≥ 0 and ry ≡ (Ryy)/R ≥ 0.

In Appendix B.5, we derive the necessary and su�cient condition for local-equilibrium determi-

nacy under this �oor system. We show in particular that a su�cient condition is

ry <
1− δmχy
δmχi

, (27)

where the right-hand side is positive. If the IOR rate reacts only to in�ation (i.e. ry = 0),

then Condition (27) is necessarily met. In this case, determinacy obtains for any non-negative

reaction to in�ation (i.e. for any value of rπ ≥ 0), and the Taylor principle does not apply.

Alternatively, if the IOR rate reacts also to output (i.e. ry > 0), then, to get a sense of how

lax or stringent Condition (27) is, we consider the same calibration as in Subsection 4.1, which

involves a large balance sheet (consistently with the discussion of a �oor system for the Fed).

Under this calibration, we get the value 15.7 for the right-hand side of (27). This threshold

value seems comfortably high, given that the Taylor-rule coe�cient on output is typically one

order of magnitude lower in the literature. Thus, we view Condition (27) as likely to be met,

and therefore determinacy as likely to prevail, under such a �oor system in our model.

While our model delivers determinacy under both passive and active interest-rate rules, alter-

native rules do di�er in our setup − in terms of their stabilization properties. In Appendix B.6,

motivated in part by the recent (2021-2022) surge in US in�ation, we add an adverse supply

shock to our model and compare the performance of alternative rules that link the policy rate

to in�ation (�performance� of the rules in terms of their ability to stabilize in�ation following

the shock). Interestingly, the performance of policy rules deteriorates as we raise the response

of the policy rate to in�ation over the [0,1] interval, and then improves as the rules turn more

active (as we raise the response coe�cient above unity). Our discussion in Appendix B.6 relates

these numerical results to the cost channel of monetary policy.
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7 Conclusion

Central banks conduct monetary policy by setting, ultimately, two instruments that they directly

control: the interest rate on bank reserves and the size of their balance sheet. In this paper, we

have taken this fact seriously and proposed a model in which the central bank sets these two

instruments. Central-bank liabilities consist only of bank reserves in the benchmark version of

the model, but include also household cash in an extended version.

We show that the model can account, in qualitative terms, for the three key observations made by

Cochrane (2018) about US in�ation at the ZLB: no signi�cant de�ation, little in�ation volatility,

and no signi�cant in�ation following quantitative-easing policies. In addition, we show that with

liquid government bonds, the model can also account for the negative spread between Treasury-

bill and IOR rates observed during this ZLB episode. We analyze the implications of our

model for the normalization and operational framework of monetary policy. On this front, we

do not �nd any possibility of Neo-Fisherian e�ects during the monetary-policy normalization

process, as current and expected future IOR-rate hikes and balance-sheet contractions always

exert de�ationary pressures in our model. And we show that under a �oor system, the central

bank need not follow an active IOR-rate rule in order to ensure local-equilibrium determinacy:

a passive IOR-rate rule (even an IOR-rate peg) works as well.

As we noted in the Introduction, our model with near satiation of demand for reserves is not

the only way one can address our broad observations about the Great Recession. Models with

full satiation of money demand − and, thus, no in�ationary e�ects of QE − can provide an

alternative if they set a nominal anchor. Prominent examples in the literature are the Fiscal

Theory as well as models that depart from rational expectations and deliver determinacy under

an interest-rate peg. Unlike these models, our model implies that large balance-sheet expansions

can have in�ationary aftermaths. This is likely to be the case if the expansions come to be viewed

as permanent or long-lasting, all the more so if the opportunity cost of holding reserves starts

to rise.

The opportunity cost of holding reserves, which plays a key role in our model, is measured by the

spread between a shadow rate and the IOR rate (independently of our simplifying assumption

that households have access to hypothetical bonds providing no non-pecuniary services and

being in zero net supply). The fact that this shadow rate is not observable is a limitation for our

model's quantitative implications about the in�ationary e�ects of QE. In future work, we hope

to develop a model with a role for observable spreads; such a model will require more detail

about the banking sector and the demand for reserves and other assets.
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In this Online Appendix, to lighten up the notation, we sometimes omit function arguments

when no ambiguity results.

Appendix A: Non-Linear Benchmark Model

In this appendix, we prove the existence of the function M, and we establish the properties

of the functions f b, gb, Γ, M, and F (which play a role in our benchmark model). We also

show how our steady-state targets pin down the parameters in the calibration of our benchmark

model under iso-elastic production and utility functions. We omit time subscripts to lighten up

the notation, thus writing hb, `, and m instead of hbt , `t, and mt.

A.1 Concavity of the Function f b

Since f b is homogeneous of degree d, we have ∀x ∈ R≥0, f b(xhb, xm) = xdf b(hb,m). Computing

the �rst derivative of the left- and right-hand sides of this equation with respect to x at x = 1

leads to

df b = hbf bh +mf bm. (A.1)

In turn, computing the �rst derivative of the left- and right-hand sides of the last equation with

respect to hb and m leads to

f bhh = −
(1− d) f bh +mf bhm

hb
and f bmm = −

(1− d) f bm + hbf bhm
m

.

Using these expression for f bhh and f bhm, as well as (A.1), we get

f bhhf
b
mm −

(
f bhm

)2
=

1− d
hbm

[
(1− d) f bhf

b
m + f bhm

(
hbf bh +mf bm

)]
=

1− d
hbm

[
(1− d) f bhf

b
m + df bf bhm

]
≥ 0,

which implies (together with f bhh ≤ 0 and f bmm ≤ 0) that the function f b is (weakly) concave.
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A.2 Properties of the Function gb

Computing the �rst and second derivatives of the left- and right-hand sides of ` = f b[gb(`,m),m]

with respect to ` and m gives

1 = f bhg
b
` , 0 = f bhg

b
m + f bm, 0 = f bhh

(
gb`

)2
+ f bhg

b
``,

0 = f bhhg
b
`g
b
m + f bhmg

b
` + f bhg

b
`m, and 0 = f bhh

(
gbm

)2
+ 2f bhmg

b
m + f bhg

b
mm + f bmm.

Using these equations and f bh > 0, f bm > 0, f bhh < 0, f bhm ≥ 0, and f bmm < 0, we sequentially get

gb` =
1

f bh
> 0, gbm =

−f bm
f bh

< 0, gb`` =
−f bhh(
f bh
)3 > 0,

gb`m =
f bmf

b
hh(

f bh
)3 − f bhm(

f bh
)2 < 0, and gbmm =

−f bhh
(
f bm
)2(

f bh
)3 + 2

f bmf
b
hm(

f bh
)2 − f bmm

f bh
> 0.

Then, using these expressions for gb``, g
b
mm, g

b
`m, and the concavity of f b, we easily get

gb``g
b
mm −

(
gb`m

)2
=
f bhhf

b
mm −

(
f bhm

)2(
f bh
)4 ≥ 0,

which implies (together with gb`` > 0 and gbmm > 0) that the function gb is (weakly) convex.

Moreover, since f b is homogeneous of degree d, we have ∀x ∈ R≥0, gb(xd`, xm) = xgb(`,m).

Computing the �rst derivative of the left- and right-hand sides of this equation with respect to

x at x = 1 leads to

gb = d`gb` +mgbm. (A.2)

In turn, computing the �rst derivative of the left- and right-hand sides of the last equation with

respect to ` and m leads to

gb`` =
(1− d) gb` −mgb`m

d`
, (A.3)

gbmm =
−d`gb`m
m

. (A.4)

Finally, as a direct consequence of limm→+∞ f
b
m(hb,m) = 0 and limm→0 f

b
h(hb,m) = 0, we get

limm→+∞ g
b
m(`,m) = 0 and limm→0 g

b
`(`,m) = +∞ for all ` ∈ R≥0.

A.3 Properties of the Function Γ

Computing the �rst and second derivatives of the left- and right-hand sides of Γ(`,m) ≡
vb[gb(`,m)] with respect to ` and m gives

Γ` = vb′gb` > 0, Γm = vb′gbm < 0, Γ`` = vb′′
(
gb`

)2
+ vb′gb`` > 0,

Γ`m = vb′′gb`g
b
m + vb′gb`m < 0, and Γmm = vb′′

(
gbm

)2
+ vb′gbmm > 0,
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where the inequalities follow from vb′ > 0, vb′′ ≥ 0, gb` > 0, gbm < 0, gb`` > 0, gbmm > 0, and

gb`m < 0. In addition, using �rst (A.3)-(A.4) and then (A.2), we easily get

Γ``Γmm − (Γ`m)2 =
(
vb′
)2
[
gb``g

b
mm −

(
gb`m

)2
]

+vb′vb′′
[(
gb`

)2
gbmm +

(
gbm

)2
gb`` − 2gb`g

b
mg

b
`m

]
=
− (1− d)

(
vb′
)2
gb`g

b
`m

m

+
vb′vb′′

d`m

[
−gb`m

(
d`gb` +mgbm

)2
+ (1− d)mgb`

(
gbm

)2
]

=
− (1− d)

(
vb′
)2
gb`g

b
`m

m

+
vb′vb′′

d`m

[
−
(
gb
)2
gb`m + (1− d)mgb`

(
gbm

)2
]

≥ 0, (A.5)

which implies (together with Γ`` > 0 and Γmm > 0) that the function Γ is (weakly) convex.

Finally, as a direct consequence of limm→+∞ g
b
m(`,m) = 0 and limm→0 g

b
`(`,m) = +∞, we get

limm→+∞ Γm(`,m) = 0 and limm→0 Γ`(`,m) = +∞ for all ` ∈ R≥0.

A.4 Existence and Properties of the Function M

Using (3), (5), (9), (13), (17), and (18), we can rewrite households' �rst-order condition for loans

(6), at the steady state, as a relationship between reserves m and employment h:

Γ` [L (h) ,m] = A (h) ≡ u′ [f (h)]

φ

{(
ε− 1

ε

)
u′ [f (h)] f ′ (h)

v′ (h)
− 1

}
. (A.6)

Because the left-hand side of (A.6) is positive, we restrict the domain of the function A to (0, h?),

where h? > 0 is implicitly and uniquely de�ned by u′[f(h?)]f ′(h?)/v′(h?) = ε/(ε−1). The value

h? is the value that h would take in the absence of �nancial frictions, i.e. if the marginal banking

cost Γ` were zero. The function A is strictly decreasing (A′ < 0), with limh→0A(h) = +∞ and

limh→h? A(h) = 0.

Since Γ`` > 0, L′ > 0, Γ`m < 0, and A′ < 0, Equation (A.6) implicitly and uniquely de�nes a

functionM such that

m =M (h) .

This function is strictly increasing (M′ > 0). Moreover, since limm→0 Γ`(`,m) = +∞,M is de-

�ned over (0, h̄), where h̄ ∈ (0, h?] is implicitly and uniquely de�ned by limm→+∞ Γ`[L(h̄),m] =
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A(h̄).1 Finally, this last equation straightforwardly implies

lim
h→h̄
M(h) = +∞. (A.7)

A.5 Properties of the Function F

Using (A.6), we can rewrite F (h) as

F (h) =
1

φ
F1 (h)F2 (h) ,

where the functions F1 and F2 are de�ned over (0, h̄) by

F1 (h) ≡ Γm [L (h) ,M (h)]

Γ` [L (h) ,M (h)]
=
gbm [L (h) ,M (h)]

gb` [L (h) ,M (h)]
,

F2 (h) ≡
(
ε− 1

ε

)
u′ [f (h)] f ′ (h)

v′ (h)
− 1.

We have (
gb`

)2
F ′1 = gb`

(
gb`mL′ + gbmmM′

)
− gbm

(
gb``L′ + gb`mM′

)
= −gb`m

(
dLgb` +Mgbm

)(M′
M
− L

′

dL

)
− (1− d) gb`g

b
m

L′

dL

= −gbgb`m
(
M′

M
− L

′

dL

)
− (1− d) gb`g

b
m

L′

dL
,

where the second equality follows from (A.3)-(A.4), and the third equality from (A.2). Now,

deriving the left- and right-hand sides of (A.6) with respect to h gives

Γ`mM′ + Γ``L′ = A′ < 0.

Moreover, using (A.2) and (A.3), we get

dLΓ`` +MΓ`m = dL
[
vb′′
(
gb`

)2
+ vb′gb``

]
+M

(
vb′′gb`g

b
m + vb′gb`m

)
= vb′′gb`

(
dLgb` +Mgbm

)
+ vb′

(
dLgb`` +Mgb`m

)
= vb′′gbgb` + (1− d) vb′gb`

≥ 0.

The last two inequalities together imply

M′

M
>
L′

dL
, (A.8)

from which we conclude that F ′1 > 0. Then, using F ′1 > 0, F1 < 0, F ′2 < 0, and F2 > 0, we get

that the function F is strictly increasing (F ′ > 0).

1The upper bound of employment h̄ coincides with the frictionless employment level h? in the case where the
marginal banking cost Γ` converges to zero as real reserves tend to in�nity. In general, however, we allow the
marginal banking cost to converge to a positive value − in which case we have h̄ < h?, and our economy with
the �nancial friction cannot attain the employment level of the frictionless economy.
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Moreover, F ′1 > 0 and F1 < 0 imply that limh→0F1 (h) < 0, while the Inada condition

limc→0 u
′(c) = +∞ implies that limh→0F2 (h) = +∞, so that

lim
h→0
F (h) = −∞.

Finally, both limh→h̄F1 (h) and limh→h̄F2 (h) are �nite, since F1 is increasing and negative, and

F2 decreasing and positive. If h̄ < h?, then (A.7) and the Inada condition limm→+∞ Γm(`,m) =

0 implies limh→h̄F1 (h) = 0. Alternatively, if h̄ = h?, then limh→h̄F2 (h) = 0. We conclude

that, in both cases,

lim
h→h̄
F (h) = 0.

A.6 Calibration Under Iso-Elastic Production and Utility Functions

To see how our targets for I` and m/` pin down the parameters ς and Vb, we �rst rewrite

households' �rst-order conditions (6) and (7) as

βI` = 1 +
Vb

(1− ς)λ
A
−(1+η)

1−ς
b `

η+ς
1−ςm

−ς(1+η)
1−ς (A.9)

and

βIm = 1− ςVb
(1− ς)λ

A
−(1+η)

1−ς
b `

1+η
1−ςm

−(1+ςη)
1−ς (A.10)

in the steady state. Equations (A.9) and (A.10) give parameter ς as a function of I`, m/`, and

already calibrated parameters:

ς =
(m
`

)(1− βIm

βI` − 1

)
.

Thus, the targets for I` and m/` pin down ς; we get ς = 0.0039.

Next, we rewrite �rms' �rst-order condition under �exible prices (13) as

w = αA

(
ε− 1

ε

)[
φ
I`

I
+ (1− φ)

]−1

h−(1−α) (A.11)

in the steady state, and we use (3), (9), and (17) to rewrite households' intra-temporal �rst-order

condition (5) as

w = V Aσhη+ασ (A.12)

in the steady state. Equations (A.11) and (A.12) give the steady-state value of hours worked h

as a function of I` and already calibrated parameters:

h =

{
αA1−σ

V

(
ε− 1

ε

)[
φ
I`

I
+ (1− φ)

]−1
} 1

η+ασ+(1−α)

.

Thus, the target for I` pins down h. We plug the value obtained for h into either (A.11) or

(A.12) to get the steady-state real wage w. Using the borrowing constraint (10) holding with

equality, we then get the steady-state value of real loans ` = φwh, from which we get in turn
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the steady-state value of real reserves m = (m/`)`. The value that we have obtained for h also

gives us the steady-state value of consumption c = y = Ahα, from which we get in turn the

steady-state value of the marginal utility of consumption λ = c−σ. By plugging these values of

`, m, and λ, as well as the value that we have obtained for ς, into either (A.9) or (A.10), we

recover the implied value of Vb; we get Vb = 0.019.

Appendix B: Log-Linearized Benchmark Model

In this appendix, we log-linearize our benchmark model around its unique steady state; we show

that the model has a unique local equilibrium under exogenous monetary-policy instruments;

we characterize this equilibrium; and we derive the necessary and su�cient condition for local-

equilibrium determinacy under a �oor system.

B.1 Log-Linearization

The IS equation (21), with σ ≡ −u′′(c)c/u′(c) (where c denotes steady-state consumption), is

straightforwardly obtained by log-linearizing households' �rst-order conditions (3)-(4) and the

goods-market-clearing condition (17).

To derive the Phillips curve (22), we log-linearize �rms' �rst-order condition (12), and use the

de�nition of the real wage wt ≡Wt/Pt, to get

P̂ ∗t = (1− βθ)Et

{
+∞∑
k=0

(βθ)k
[
αφ

(
i`t+k − it+k

)
+ ŵt+k + P̂t+k − m̂p t+k|t

]}
, (B.1)

where αφ ≡ φI`/[φI` + (1−φ)I] ∈ (0, 1], variables with hats denote log deviations from steady-

state values, i`t ≡ Î`t , it ≡ Ît, and mp t+k|t denotes the marginal productivity in period t+ k for

a �rm whose price was last set in period t. Log-linearizing the production function (9) gives

ĥt =
f

f ′h
ŷt, (B.2)

so that we can rewrite m̂p t+k|t as

m̂p t+k|t =
f ′′h

f ′
ĥ t+k|t = m̂pt+k +

f ′′h

f ′

(
ĥ t+k|t − ĥt+k

)
= m̂pt+k +

ff ′′

(f ′)2

(
ŷ t+k|t − ŷt+k

)
= m̂pt+k −

εff ′′

(f ′)2

(
P̂ ∗t − P̂t+k

)
, (B.3)

where mpt+k denotes the average marginal productivity in period t+ k. Using this result and

πt ≡ log (Πt) = (1− θ)
(
P̂ ∗t − P̂t−1

)
,

and following the same steps as in, e.g., Galí (2015, Chapter 3), we can rewrite (B.1) as

πt = βEt {πt+1}+
(1− θ) (1− βθ)

θ
[
1− εff ′′

(f ′)2

] [
αφ

(
i`t − it

)
+ ŵt − m̂pt

]
. (B.4)

Online Appendix − 6



Now, log-linearizing the goods-market-clearing condition (17) gives

ĉt = ŷt. (B.5)

Log-linearizing the �rst-order condition (6), and using (B.5), gives

i`t − it = α`
Γ```

Γ`
ˆ̀
t + α`

Γ`mm

Γ`
m̂t + α`σŷt, (B.6)

where α` ≡ (I` − I)/I` ∈ (0, 1). Log-linearizing the �rst-order condition (5), and using (B.2)

and (B.5), gives

ŵt =

(
σ +

v′′h

v′
f

f ′h

)
ŷt. (B.7)

Log-linearizing the constraint (10) holding with equality, and using (B.2) and (B.7), gives

ˆ̀
t =

(
σ +

v′′h

v′
f

f ′h
+

f

f ′h

)
ŷt. (B.8)

Moreover, we have

m̂pt =
ff ′′

(f ′)2 (ŷt) . (B.9)

Using (B.6), (B.7), (B.8), and (B.9), we can then rewrite (B.4) as the Phillips curve (22):

πt = βEt {πt+1}+ κ (ŷt − δmm̂t)

with

κ ≡
[
σ +

v′′h

v′
f

f ′h
− ff ′′

(f ′)2 + α`αφσ + α`αφ
Γ```

Γ`

(
σ +

v′′h

v′
f

f ′h
+

f

f ′h

)]
Ψ > 0,

δm ≡ −α`αφ
(

Γ`mm

Γ`

)
Ψ

κ
> 0,

where in turn

Ψ ≡ (1− θ) (1− βθ)

θ
[
1− εff ′′

(f ′)2

] .

To derive the reserves-demand equation (23), we log-linearize the �rst-order condition (7) and

use (B.5) to get

it − imt = αm
Γ`m`

Γm
ˆ̀
t + αm

Γmmm

Γm
m̂t + αmσŷt, (B.10)

where imt ≡ Îmt and αm ≡ (I − Im)/Im > 0. Using (B.8), we can rewrite (B.10) as the

reserves-demand equation (23):

m̂t = χyŷt − χi (it − imt )

with

χy ≡ −
[
σ +

Γ`m`

Γm

(
σ +

v′′h

v′
f

f ′h
+

f

f ′h

)](
Γmmm

Γm

)−1

> 0,

χi ≡
(
−αm

Γmmm

Γm

)−1

> 0.
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B.2 Unique Local Equilibrium Under Exogenous Instruments

Under permanently exogenous monetary-policy instruments imt and M̂t, the IS equation (21),

the Phillips curve (22), the reserves-demand equation (23), and the identities m̂t = M̂t− P̂t and
πt = P̂t − P̂t−1 lead to the following dynamic equation relating P̂t to Et{P̂t+2}, Et{P̂t+1}, P̂t−1,

and exogenous terms:

Et
{
LP

(
L−1

)
P̂t

}
= Zt,

where

P (z) ≡ z3 −
[
2 +

1

β
+

χy
σχi

+

(
1

σ
− δm

)
κ

β

]
z2 +

[
1 +

2

β
+

(
1 +

1

β

)
χy
σχi

+

(
1

σ
− δm

)
κ

β
+ (1− δmχy)

κ

βσχi

]
z −

(
1

β
+

χy
βσχi

)
,

Zt ≡
−κ
βσ

(imt − rt) +

[
1

σχi
−
(

1 +
χy
σχi

)
δm

]
κ

β
M̂t +

δmκ

β
Et
{
M̂t+1

}
.

Now, our model, given its structure, implies that

σ < χy <
1

δm
, (B.11)

as we show Appendix B.3. The �rst inequality in (B.11) arises from the fact that bank loans

serve to �nance the wage bill (or some fraction of it). If output ŷt increases by 1%, the marginal

utility of consumption decreases by σ%; so, the wage, the wage bill, and loans all increase by

more than σ%; and, in turn, so does the demand for reserves m̂t for a given spread it − imt
(i.e., χy > σ). The second inequality in (B.11) re�ects how holding reserves mitigates the costs

of banking. For a given spread it − imt , a rise in output ŷt has two opposite e�ects on �rms'

marginal cost of production (i.e., on the term in factor of κ in the Phillips curve): a standard

positive direct e�ect (with elasticity 1), and a negative indirect e�ect via the implied rise in

reserves m̂t (with elasticity χyδm). The inequality states that the direct e�ect dominates the

indirect one (i.e., χyδm < 1).

The polynomial P(z) can be rewritten as

P (z) = z3 −
(

1 + 2β + βΘ1 + Θ2

β

)
z2 +

[
2 + β + (1 + β) Θ1 + Θ2 + Θ3

β

]
z −

(
1 + Θ1

β

)
= (z − 1−Θ1)

[
z2 −

(
1 + β + Θ2

β

)
z +

1

β

]
−
(

Θ1Θ2 −Θ3

β

)
z,

where Θ1 ≡ χy/(σχi) > 0, Θ2 ≡ (1/σ − δm)κ, and Θ3 ≡ (1 − δmχy)κ/(σχi). The double

inequality (B.11) implies Θ2 > 0, Θ3 > 0, and Θ1Θ2 −Θ3 = (χy − σ)κ/(σ2χi) > 0. Therefore,

we get P(0) = −(1 + Θ1)/β < 0, P(1) = Θ3/β > 0, P(1 + Θ1) = −(Θ1Θ2−Θ3)(1 + Θ1)/β < 0,

and limz∈R,z→+∞ P(z) = +∞ > 0. As a consequence, the roots of P (z) are three real numbers

ρ, ω1, and ω2 such that 0 < ρ < 1 < ω1 < 1 + Θ1 < ω2.
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With one eigenvalue inside the unit circle (ρ) for one predetermined variable (P̂t−1), thus, our

model satis�es Blanchard and Kahn's (1980) conditions and has a unique bounded solution. We

rewrite the dynamic equation as

Et
{(
L−1 − ω1

) (
L−1 − ω2

)
(1− ρL) P̂t

}
= Zt

and use the method of partial fractions to solve this equation forward and get the unique bounded

solution for P̂t − ρP̂t−1:

P̂t − ρP̂t−1 = Et
{

Zt
(L−1 − ω1) (L−1 − ω2)

}
=

Et
ω2 − ω1

{
ω−1

1 Zt

1− (ω1L)−1 −
ω−1

2 Zt

1− (ω2L)−1

}
=

Et
ω2 − ω1

{
+∞∑
k=0

(
ω−k−1

1 − ω−k−1
2

)
Zt+k

}
. (B.12)

Using the price-level solution (B.12), the Phillips curve (22), and the identities m̂t = M̂t − P̂t
and πt = P̂t − P̂t−1, we then get

πt = − (1− ρ) P̂t−1 +
Et

ω2 − ω1

{
+∞∑
k=0

(
ω−k−1

1 − ω−k−1
2

)
Zt+k

}
,

ŷt = −ϑP̂t−1 + δmM̂t −
Et

(ω2 − ω1)κ

{
+∞∑
k=0

(
ξ1ω
−k−1
1 − ξ2ω

−k−1
2

)
Zt+k

}
,

where ϑ ≡ (1− ρ)(1− βρ)/κ+ δmρ and ξj ≡ β(ωj + ρ− 1) + κδm − 1 for j ∈ {1, 2}.

B.3 Proof of the Double Inequality (B.11)

To show that χy < 1/δm, we de�ne Ω ≡ δmκ/(αmχiΨ) > 0 and we write

Ω

(
1

δm
− χy

)
=
−Γmmm

Γm

[
α`αφ

Γ```

Γ`

(
σ +

v′′h

v′
f

f ′h
+

f

f ′h

)
+ (1 + α`αφ)σ +

v′′h

v′
f

f ′h
− ff ′′

(f ′)2

]
+α`αφ

Γ`mm

Γ`

[
σ +

Γ`m`

Γm

(
σ +

v′′h

v′
f

f ′h
+

f

f ′h

)]
=
−Γmmm

Γm

[
σ +

v′′h

v′
f

f ′h
− ff ′′

(f ′)2

]
−
α`αφ`m

Γ`Γm

(
σ +

v′′h

v′
f

f ′h
+

f

f ′h

)[
Γ``Γmm − (Γ`m)2

]
+α`αφσm

(
Γ`m
Γ`
− Γmm

Γm

)
.

The last expression is the sum of three terms (one per line). The �rst term is positive. So is the

second one, given (A.5). And so is the third one, given that

Γ`m
Γ`
− Γmm

Γm
=

(
vb′
)2 (

gbmg
b
`m − gb`gbmm

)
Γ`Γm

=

(
vb′
)2 (

f bhf
b
mm − f bmf bhm

)
Γ`Γm

(
f bh
)3 > 0. (B.13)
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Therefore, the whole expression is positive, which implies that χy < 1/δm.

To show that σ < χy, we write

1

αmσχi
(χy − σ) =

Γmmm

Γm
+ 1 +

1

σ

Γ`m`

Γm

(
σ +

v′′h

v′
f

f ′h
+

f

f ′h

)
= 1 +

1

σ

Γ`m`

Γm

(
v′′h

v′
f

f ′h
+

f

f ′h

)
+

1

Γm
(`Γ`m +mΓmm) .

The last expression is the sum of three terms. The �rst two terms are positive. And so is the

third one, given that

`Γ`m +mΓmm = (1− d) `Γ`m + d`Γ`m +mΓmm

= (1− d) `Γ`m + d`
[
vb′′gb`g

b
m + vb′gb`m

]
+m

[
vb′′
(
gbm

)2
+ vb′gbmm

]
= (1− d) `Γ`m + vb′′gbm

(
d`gb` +mgbm

)
+ vb′

(
d`gb`m +mgbmm

)
= (1− d) `Γ`m + vb′′gbgbm

≤ 0, (B.14)

where the last equality follows from (A.2) and (A.4). Therefore, the whole expression is positive,

which implies that σ < χy.

B.4 Comparison With the Basic NK Model

In Subsection 3.3 of the main text, we contrast the implications of our model for in�ation during a

temporary ZLB episode with the implications of the basic NK model. More speci�cally, we show

that the de�ation rate at the start of the ZLB episode grows exponentially with the expected

duration of the ZLB episode in the basic NK model, while in our model it converges to a �nite

value as the expected duration of the ZLB episode goes to in�nity.

In this appendix, we illustrate these results numerically. We consider the same calibration of

our model as in Subsection 4.1, and we consider the corresponding calibration of the basic NK

model, i.e. we set the structural parameters of the basic NK model to the values that they take

in our calibrated model (given that all the structural parameters of the basic NK model are also

structural parameters of our model). In both models, we set the value of the discount-factor

shock (leading to the ZLB) based on Cúrdia's (2015) average estimate of the natural rate of

interest over the 2009Q1-2015Q4 ZLB episode. This average estimate is -3.1% per year; average

CPI in�ation over the same period is 1.4% per year; so, we get an estimate of Cúrdia's �interest-

rate gap� at -3.1+1.4=-1.7% per year, and we thus set imt − rt to 1.7% per year during our ZLB

episode (i.e. z∗ = 1.7% in the notation of Subsection 3.3).

Figure B.1 shows the value of in�ation and output at the start of the ZLB episode, depending

on the expected duration T of the ZLB episode, in the basic NK model and in our model. In

the basic NK model (but not in our model), in�ation and output decrease exponentially with
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Figure B.1 � E�ects of a ZLB episode of expected duration T on in�ation and output at the
start of the episode
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T , and their fall quickly reaches substantial values: -21% per year for in�ation and -14% for

output for an expected ZLB duration of 8 quarters (i.e. 2 years).

Eight quarters for the expected ZLB duration does not seem an unrealistic �gure to us. The

Survey of Primary Dealers of the Federal Reserve Bank of New York indicates that in September

2012, primary dealers were expecting the ZLB episode to last for the next 11 quarters (until mid-

2015), as emphasized by Yellen (2012). In October and December 2012, as well as in January

2013, they were still expecting the ZLB episode to last for the next 10 quarters.2

B.5 Determinacy Condition Under a Floor System

Using the IS equation (21), the Phillips curve (22), the reserves-demand equation (23), the

Taylor rule (26), and the identities m̂t = M̂t− P̂t and πt = P̂t− P̂t−1, we get a dynamic equation

relating P̂t to Et{P̂t+2}, Et{P̂t+1}, P̂t−1, and exogenous terms, whose characteristic polynomial

is

Pr (z) ≡ z3 − a2z
2 + a1z − a0

with

a2 ≡ 2 +
1

β
+

(1− σδm)κ

βσ
+

χy
σχi

+
ry
σ
> 0,

a1 ≡ 1 +
2

β
+

(1− σδm)κ

βσ
+

(1 + β)χy
βσχi

+
(1− δmχy)κ

βσχi
+
κrπ
βσ

+
(1 + β − δmκ) ry

βσ
,

a0 ≡ 1

β
+

χy
βσχi

+
κrπ
βσ

+
ry
βσ

> 0,

where the �rst inequality follows from the double inequality (B.11). Given that there is exactly

one predetermined variable (P̂t−1), the necessary and su�cient condition for local-equilibrium

2Similarly, the Blue-Chip Survey of Forecasters indicates that in several months of 2011-2013, the Fed Funds
rate was expected to remain constant for �7 or more� quarters. And the Philadelphia Fed's Survey of Professional
Forecasters indicates that in 2012Q1, the 3-month T-bill rate was expected to remain at 0.10% for at least 7
quarters (i.e. at least throughout both 2012 and 2013).
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determinacy is that Pr(z) have exactly one root inside the unit circle. This root must be a real

number (indeed, if it were a complex number, its conjugate would be another root inside the

unit circle). We have Pr(0) = −a0 < 0 and Pr(1) = (1 − δmχy − δmχiry)κ/(βσχi). In the

following, we consider two alternative cases in turn, depending on the sign of Pr(1).

We �rst consider the case in which Pr(1) > 0, that is to say equivalently the case in which

ry < ζ1, (B.15)

where

ζ1 ≡
1− δmχy
δmχi

> 0,

where in turn the last inequality follows from the second inequality in (B.11). In this case, Pr(0)

and Pr(1) are of opposite signs, so that Pr(z) has either one or three real roots inside (0, 1).

Moreover, in this case, we have

a1 = 1 +
2

β
+

(1− σδm)κ

βσ
+

(1 + β)χy
βσχi

+
κrπ
βσ

+
(1 + β) ry

βσ
+

(ζ1 − ry) δmκ
βσ

> 0,

where the inequality comes from (B.11) and (B.15). In turn, a1 > 0, together with a0 > 0 and

a2 > 0, implies that Pr(z) < 0 for all z < 0, and hence that Pr(z) has no negative real roots.

So, Pr(z) has at least one real root inside (0, 1), which we denote by ρ, and its other two roots,

which we denote by ω1 and ω2 with |ω1| ≤ |ω2|, are either (i) both real and inside (0, 1), or (ii)

both real and higher than 1, or (iii) both complex and conjugates of each other. Now, we have

ρ+ ω1 + ω2 = a2 > 3, where the inequality follows from the double inequality (B.11) and from

β < 1. Therefore, Case (i) is impossible, and in Case (iii) the common real part of ω1 and ω2 is

higher than 1. So, in the remaining two possible cases, namely Cases (ii) and (iii), ω1 and ω2

lie outside the unit circle. As a consequence, we get local-equilibrium determinacy.

We now turn to the alternative case in which Pr(1) < 0, that is to say equivalently the case

in which Condition (B.15) is not met. In this case, Pr(0) and Pr(1) have the same sign, so

that Pr(z) has either zero or two real roots inside (0, 1). Therefore, a necessary condition for

local-equilibrium determinacy is then that Pr(−1) be of the opposite sign, i.e. Pr(−1) > 0, so

that Pr(z) can have either one or three real roots inside (−1, 0). This necessary condition for

determinacy can be written as

[δmκ− 2 (1 + β)] ry > 4 (1 + β)σ +
2 (1 + β)χy

χi
+ 2 (1− σδm)κ+

(1− δmχy)κ
χi

+ 2κrπ.

The right-hand side of this inequality is positive, given the double inequality (B.11). Therefore,

the necessary condition for determinacy can be equivalently rewritten as

δmκ > 2 (1 + β) and ry > ζ2 + ζ3rπ, (B.16)

where

ζ2 ≡ 4 (1 + β)σχi + 2 (1 + β)χy + 2 (1− σδm)κχi + (1− δmχy)κ
[δmκ− 2 (1 + β)]χi

> ζ1,

ζ3 ≡ 2κ

δmκ− 2 (1 + β)
> 0,
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where in turn the last two inequalities follow from the �rst inequality in (B.16). We now show

that Condition (B.16) is not only necessary, but also su�cient for local-equilibrium determinacy

in that case. To that aim, assume that this condition is met. Then, Pr(−1) and Pr(0) are of

opposite signs, so that Pr(z) has either one or three real roots inside (−1, 0). Let ρ denote one

root of Pr(z) inside (−1, 0). The other two roots of Pr(z), which we denote by ω1 and ω2 with

|ω1| ≤ |ω2|, can be either (i) both real and inside (−1, 0), or (ii) both real and inside (0, 1), or

(iii) both real and outside (−1, 1), or (iv) both complex and conjugates of each other. Since

ρ+ ω1 + ω2 = a2 > 3, however, Cases (i) and (ii) are impossible, and in Case (iv) the common

real part of ω1 and ω2 is higher than 1. Therefore, in the remaining two possible cases, namely

Cases (iii) and (iv), ω1 and ω2 lie outside the unit circle. As a consequence, Condition (B.16)

is, indeed, su�cient for local-equilibrium determinacy in that case.

From the results obtained in the two alternative cases considered, we get that there is local-

equilibrium determinacy if and only if either Condition (B.15) is met, or Condition (B.15) is not

met and Condition (B.16) is met. Now, Conditions (B.15) and (B.16) are mutually exclusive,

given that ζ2 > ζ1. We conclude that there is local-equilibrium determinacy if and only if either

Condition (B.15) or Condition (B.16) is met.

B.6 Floor system and supply shock

In this appendix, motivated in part by the surge in US in�ation in 2021-2022, we introduce a

supply shock At into our model and compare the performance of alternative rules that link the

policy rate to in�ation. We rewrite the production function as

yt (i) = Atf [ht (i)] .

We log-linearize the model in the same way as in Appendix B.1. The IS equation (21) is

unchanged, but a new term in Ât appears in the Phillips curve and the reserves-market-clearing

condition:

πt = βEt {πt+1}+ κ
(
ŷt − δmm̂t − δaÂt

)
,

m̂t = χyŷt − χi (it − imt )− χaÂt,

where

δa ≡
[
1 +

v′′h

v′
f

f ′h
− ff ′′

(f ′)2 + α`αφ
Γ```

Γ`

(
v′′h

v′
f

f ′h
+

f

f ′h

)]
Ψ

κ
> 0

χa ≡ αm
Γ`m`

Γm

(
v′′h

v′
f

f ′h
+

f

f ′h

)
χi > 0.

A positive supply shock (Ât > 0) reduces the marginal cost of production for a given output

level and a given level of real reserve balances (hence the negative term −δaÂt in the Phillips

curve), and it also reduces the demand for reserves for a given output level and a given spread

(hence the negative term −χaÂt in the reserves-market-clearing condition).
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We consider a �oor system in which Mt is set exogenously and imt is set according to the simple

rule

imt = rππt,

where rπ ≥ 0. This �oor system delivers local-equilibrium determinacy, as we have shown in

Section 6.2 and Appendix B.5. Finally, we assume that Ât follows an AR(1) process:

Ât = ρaÂt−1,

where ρa ∈ [0, 1].

For the standard value ρa = 0.9, Figure B.2 shows the response of in�ation to a 1% negative

supply shock under alternative policies with di�erent values of rπ. Interestingly, the performance

of the policy rule deteriorates − in terms of stabilizing in�ation over horizons up to 10 quarters

− as we go from rπ = 0 to rπ = 0.5, and then to rπ = 1.

Figure B.2 � Response of in�ation to a 1% negative supply shock, depending on rπ
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Changing rπ a�ects in�ation through two channels in our model. One channel is the familiar

one: for rπ > 1, an in�ationary shock leads to an increase in the real policy rate. The second

channel is a cost channel of monetary policy re�ected in Equations (22) and (23). A stronger

response to in�ation leads to a sharper drop in output, which leads to a sharper drop in real

money balances in (23). The sharper drop in real money balances, in turn, raises banking costs,

which raises in�ation in (22).

To be more precise about how the cost channel works in our model, we focus on the impact e�ects

of the 1% adverse supply shock under alternative rules. Figure B.3 shows the contemporaneous

impact of the shock on in�ation, real reserve balances, output and the spread, depending on rπ.

Since nominal reserve balances are constant, the impact on in�ation (top left panel of Figure

B.3) is the opposite of the impact on real reserve balances (top right panel of Figure B.3), up
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to a factor 4 (as in�ation is expressed in % per year, not in % per quarter). The in�ationary

impact of the adverse supply shock is non-monotonic in the rule's coe�cient rπ: it �rst increases

with rπ for rπ below one, and then decreases with rπ for rπ above one (top left panel of Figure

B.3). This non-monotonicity can be understood as the result of two opposite e�ects: an output

e�ect, and a spread e�ect.

Figure B.3 � Impact of a 1% negative supply shock, depending on rπ
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The output e�ect is the following: for a given increase in in�ation (triggered by the adverse

supply shock), as rπ increases, Imt rises further, and so does It. The increase in It has a

contractionary e�ect on output (bottom left panel of Figure B.3). For a given spread It − Imt ,
this output contraction makes the demand for real reserve balances fall in the reserves-market-

clearing condition (23). Since nominal reserve balances are constant, prices rise. So, the output

e�ect makes in�ation increase with rπ, for a given spread.

The spread e�ect is that the increase in rπ directly raises Imt , which in turn indirectly raises

It, but It rises by less than Imt ; so, the spread It − Imt is compressed (bottom right panel of

Figure B.3). For a given output yt, this spread compression makes the demand for real reserve

balances increase in the reserves-market-clearing condition (23). Since nominal reserve balances

are constant, prices fall. So, the spread e�ect makes in�ation decrease with rπ, for a given

output.

The response of in�ation to the adverse supply shock can thus increase or decrease with the

rule's coe�cient rπ, depending on which of the two (output and spread) e�ects dominates the

other. To further understand why in�ation increases (resp. decreases) with rπ for small (resp.

large) values of rπ, we can solve for the unique local equilibrium of the model in the same way
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as in Appendix B.2; we then get

πt = − (1− ρ) P̂t−1 +
(1− δmχy)κ

βσχi (ω1 − 1) (ω2 − 1)
M̂t−1

+
κ

β (ω2 − ω1)
Et

{
1

σ

+∞∑
k=0

(
ω−k−1

1 − ω−k−1
2

)
rt+k

+

+∞∑
k=0

[(
1− δmχy
σχi

)(
ω−k1

ω1 − 1
− ω−k2

ω2 − 1

)
+ δm

(
ω−k1 − ω−k2

)]
µ̂t+k

+
+∞∑
k=0

[(
χa − δaχy

σχi

)(
ω−k1

ω1 − 1
− ω−k2

ω2 − 1

)
+ δa

(
ω−k1 − ω−k2

)]
∆Ât+k

}
, (B.17)

where ρ, ω1 and ω2 denote again the three roots of the characteristic polynomial, with |ρ| < 1 <

|ω1| ≤ |ω2|. There are two changes compared to Equation (25). First, in�ation now responds to

the (newly introduced) supply shock Ât. Second, the roots ρ, ω1 and ω2, which characterize the

dynamic responses of in�ation to all shocks, now depend on the coe�cient rπ of the IOR-rate

rule.

Focusing on the supply shock (i.e. setting M̂t−1 = 0 and rt+k = µ̂t+k = 0 for all k ≥ 0) and

using the AR(1) assumption for this shock (i.e. using Et{∆Ât+k} = −(1 − ρa)ρk−1
a Ât for all

k ≥ 1), we can rewrite (B.17) as

πt = − (1− ρ) P̂t−1 +
(δaχy − χa)κ

βσχi (ω1 − 1) (ω2 − 1)
Ât−1

− κ

β (ω1 − ρa) (ω2 − ρa)

[
δaχy − χa

σχi
+ δa (1− ρa)

]
Ât. (B.18)

It is easy to show that δaχy − χa > 0 for iso-elastic production and utility functions. So, the

coe�cient of Ât in (B.18) is always negative:

∂πt

∂Ât
= − κ

β (ω1 − ρa) (ω2 − ρa)

[
δaχy − χa

σχi
+ δa (1− ρa)

]
< 0,

that is to say that a negative supply shock (Ât < 0) always raises in�ation (πt > 0).

The only way in which rπ a�ects ∂πt/∂Ât is via ω1 and ω2. We still have 1 < |ω1| ≤ |ω2| (as
we had for rπ = 0), but now ω1 and ω2 may be complex conjugates. For the calibration that we

use in the paper, as rπ changes, |ω1| and |ω2| move as described in Figure B.4.

For rπ between 0 and 1, ω1 and ω2 are real numbers, with 1 < ω1 < ω2; ω1 varies very

little (remains very close to 1), while ω2 decreases with rπ; so, ∂πt/∂Ât increases with rπ.

Alternatively, for rπ between 1.1 and 2, ω1 and ω2 are complex conjugates, and their common

modulus |ω1| = |ω2| increases with rπ; so, ∂πt/∂Ât decreases with rπ.

The result that we have emphasized − that the in�ationary impact of the adverse supply shock

is maximal when the rule's coe�cient is around one − is robust to alternative speci�cations for
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Figure B.4 � |ω1| and |ω2|, depending on rπ
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the IOR-rate rule and alternative model calibrations. We consider two other rules:

imt = rππt−4,

imt = 0.8imt−1 + 0.2rππt,

where rπ ≥ 0. The �rst (lagged) rule is motivated by the fact that central banks started to

raise rates in 2022Q2, about four quarters after in�ation started to surge (2021Q2). The second

(inertial) rule is commonly considered in the literature. Figures B.5 and B.6 are the counterparts

of Figure B.3 for these alternative rules. The three �gures are broadly similar, although the rise

of the in�ationary impact of the shock as a function of rπ for 0 < rπ < 1 is less pronounced in

Figures B.5 and B.6 than in Figure B.3.

Figure B.5 � Impact of a 1% negative supply shock (lagged rule), depending on rπ
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We also consider a range of alternative values for the persistence parameter ρa of the supply

shock and for the steady-state spread I − Im (which measures how far we are from satiation at

the steady state). Values of ρa ranging from 0 to 0.99 (benchmark: 0.9) may change the results
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Figure B.6 � Impact of a 1% negative supply shock (inertial rule), depending on rπ
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quantitatively, but not qualitatively. Values of I − Im ranging from 5 to 50 basis points per

annum (benchmark: 10 basis points per annum) do not change the results, neither quantitatively

nor qualitatively.

Appendix C: Benchmark Model With Reserves-Supply Rule

In the main text (Section 3), we show that our benchmark model delivers local-equilibrium

determinacy under exogenous monetary-policy instruments, and we use this determinacy re-

sult to explain the low volatility of in�ation and the absence of signi�cant de�ation at the

ZLB. Our (simplifying) assumption of exogenous nominal reserves does not seem to us like a

bad approximation of reality, given how the Fed has announced in advance a path for its bal-

ance sheet. Nonetheless, the alternative assumption of endogenous nominal reserves (i.e. a

reserves-supply rule) seems also relevant. In the present appendix, we show that our determi-

nacy result is essentially robust to the endogenization of nominal reserves. More speci�cally,

we consider a reserves-supply rule in our benchmark model; we derive a su�cient condition for

local-equilibrium determinacy under this rule and an exogenous IOR rate; and we argue that

this su�cient determinacy condition is likely to be met.

C.1 Reserves-Supply Rule, Steady State, and Log-Linearization

We assume that the central bank sets the stock of nominal reserves according to the rule

Mt = PtQ (Pt, yt) , (C.1)

where the function Q, from R2
>0 to R>0, is di�erentiable, decreasing in Pt (QP < 0), and non-

increasing in yt (Qy ≤ 0). This assumption ensures that real reserve balances respond negatively

to the price level for a given output level, and non-positively to the output level for a given price
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level. This speci�cation nests, in particular, the case of (constant) exogenous nominal reserves

considered in the rest of the paper, which corresponds to Q (Pt, yt) = M/Pt with M > 0.

This reserves-supply rule does not change any of the steady-state-equilibrium conditions stated

in Subsection 3.1. In particular, in any steady state, because real money balances and real

output are constant over time (by de�nition of a steady state), the reserves-supply rule (C.1)

implies that the price level is constant over time as well, like previously. Therefore, the necessary

and su�cient condition on Im for existence and uniqueness of a steady state is still Im < 1/β.

Log-linearizing the model around its unique steady state, we get the same IS equation (21),

Phillips curve (22), and reserves-demand equation (23) as previously, plus now the rule

m̂t = −qP P̂t − qyŷt, (C.2)

where qP ≡ −PQP (P, y)/Q(P, y) > 0 and qy ≡ −yQy(P, y)/Q(P, y) ≥ 0 (variables without

time subscript denote steady-state values).

C.2 Derivation of a Su�cient Determinacy Condition

Using the four log-linearized equations just mentioned and the identity πt = P̂t − P̂t−1, we get

the following dynamic system in m̂t and ŷt:

Et



m̂t+1

m̂t

ŷt+1

ŷt


 = A


m̂t

m̂t−1

ŷt
ŷt−1

+ B

[
imt
rt

]
, (C.3)

where

A ≡


1+β−δmκ

β
−1
β

κ
β 0

1 0 0 0
1−δmκ
βσ − 1

σχi
−1
βσ 1 +

χy
σχi

+ κ
βσ 0

0 0 1 0

+ (qP − 1)


−δmκ
β 0 κ

β 0

0 0 0 0
0 0 0 0
0 0 0 0



+
qP − 1

qP


0 0 0 0
0 0 0 0
−1
βσ

1
βσ 0 0

0 0 0 0

+ qy


δmκ
βσ + 1

σχi
0 1

β −
κ
βσ −

χy
σχi

−1
β

0 0 0 0
0 0 0 0
0 0 0 0



+
qy
qP


−1
βσ

1
βσ 0 0

0 0 0 0
0 0 1

βσ
−1
βσ

0 0 0 0

+
q2
y

qP


0 0 −1

βσ
1
βσ

0 0 0 0
0 0 0 0
0 0 0 0



and B ≡


0 0
0 0
1
σ

−1
σ

0 0

+ qy


−1
σ

1
σ

0 0
0 0
0 0

 .
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Since this system has two predetermined variables (m̂t−1 and ŷt−1) and two non-predetermined

variables (m̂t+1 and ŷt+1), the necessary and su�cient condition for local-equilibrium determi-

nacy is that the matrixA have two eigenvalues inside the unit circle and two eigenvalues outside.

We write the characteristic polynomial of A as

det (A− zI4) = zQ (z) ,

where I4 denotes the 4× 4 identity matrix and

Q (z) ≡ P (z)−
[(

δmκ

βσ
+

1

σχi

)
qy −

δmκ

β
(qP − 1)

]
z2

+

[(
δmκ

βσ
+

1 + β

βσχi

)
qy +

(
−δmκ
β

+
κ

βσχi
− δmχyκ

βσχi

)
(qP − 1)

]
z − qy

βσχi
,

where in turn P (z) is de�ned in Appendix B.2. Thus, the eigenvalues of A are 0 and the roots

of Q (z). We have

Q (0) =
−1

β
− χy
βσχi

− qy
βσχi

< −1 and Q (1) =
(1− δmχy)κqP

βσχi
> 0,

where the second inequality follows from (B.11). Therefore, Q (z) has either one root or three

roots in the real-number interval (0, 1). Now, the product of the three roots of Q (z) is equal to

−Q (0) > 1, so that Q (z) has at least one root outside the unit circle. As a consequence, Q (z)

has exactly one root inside the real-number interval (0, 1).

The other roots of Q (z) are either two real numbers outside [0, 1], or two conjugate complex

numbers. In the latter case, both are outside the unit circle, since Q (z) has at least one root

outside it. Therefore, Q (z) has exactly two roots outside the unit circle if and only if it has

no root inside the real-number interval [−1, 0). Since Q (0) < 0, this condition is equivalent to

Q (z) < 0 for all z ∈ [−1, 0]. Thus, the necessary and su�cient condition for determinacy is

Q (z) < 0 for all z ∈ [−1, 0].

A su�cient condition for determinacy is, therefore, that Q (z) < 0 for all z ∈ [−1, 0] and all

θ ∈ (0, 1). To restate this su�cient condition, we rewrite Q(z) as

Q (z) =
κ

β
[Q1 (z) +Q2 (z)] ,

where

Q1 (z) ≡ −1

κ
(1− z) (1− βz)

(
1 +

χy + qy
σχi

− z
)
,

Q2 (z) ≡
(

1 + δmqy
σ

− δmqP
)
z (1− z) +

(
1− δmχy
σχi

)
qP z.

The only reduced-form parameter that depends on the degree of price stickiness θ is the slope of

the Phillips curve κ, which is decreasing in θ. Therefore, for any z ∈ [−1, 0], Q1 (z) is decreasing

in θ, while Q2 (z) does not depend on θ. As a consequence, Q (z) < 0 for all z ∈ [−1, 0] and

all θ ∈ (0, 1) if and only if Q (z) < 0 for all z ∈ [−1, 0] as θ → 0. In turn, this condition is
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equivalent to Q2 (z) < 0 for all z ∈ [−1, 0), since limθ→0 κ = +∞ implies limθ→0Q1 (z) = 0.

Now, we can rewrite Q2(z) as

Q2 (z) = z

{
Kz +

[(
1− δmχy
σχi

)
qP −K

]}
,

where K ≡ δmqP − (1 + δmqy)/σ. Therefore, Q2 (z) < 0 for all z ∈ [−1, 0) if and only if

K <

(
1− δmχy

2σχi

)
qP , (C.4)

where the right-hand side is non-negative, as follows from the second inequality in (B.11).

Now consider the following condition:

qP ≤
{(

I` − I
I`

)[
−mΓ`m (`,m)

Γ` (`,m)

]}−1

. (C.5)

This condition implies δmqP ≤ 1/σ because

δm <
α`αφ
σ

(
−Γ`mm

Γ`

)
≤ α`

σ

(
−Γ`mm

Γ`

)
=

(
I` − I
I`

)(
−Γ`mm

Γ`

)
1

σ
.

In turn, δmqP ≤ 1/σ implies K < 0, which in turn implies (C.4), which in turn implies that

Q (z) has exactly two roots outside the unit circle, which �nally implies determinacy. Therefore,

Condition (C.5) is a su�cient condition for determinacy.

C.3 Assessment of the Su�cient Determinacy Condition

To assess whether Condition (C.5) is likely to be met or not, we proceed as follows. We consider,

for simplicity, a Cobb-Douglas speci�cation for the production function f b:

f b
(
hbt ,mt

)
≡ Ab

(
hbt

)1−ς
(mt)

ς ,

where Ab > 0 and 0 < ς < 1. This speci�cation implies that the steady-state elasticity of

marginal banking costs to reserves, which appears in Condition (C.5), can be rewritten as

−mΓ`m (`,m)

Γ` (`,m)
=

(
ς

1− ς

)[
1 +

vb′′
(
hb
)
hb

vb′ (hb)

]
.

Our Cobb-Douglas speci�cation for f b also implies that households' �rst-order conditions (6)

and (7), at the steady state, can be combined to get

ς =
(m
`

)(I − Im
I` − I

)
.

Therefore, Condition (C.5) can be rewritten as

qP ≤
1−

(
m
`

) (
I−Im
I`−I

)
(
m
`

) (
I−Im
I`

) [
1 +

vb′′(hb)hb

vb′(hb)

] . (C.6)
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We set the steady-state variables Im, I`, and m/` to match some features of the US economy

during the 2008-2015 ZLB episode. This episode lasted from December 16, 2008, to December

16, 2015; because we use monthly data, however, we consider the period from January 2009 to

November 2015. We set the net IOR rate Im − 1 to 0.25% per annum (the constant value of

the interest rate on excess reserves over the period); the net interest rate on bank loans I` − 1

to 3.25% per annum (the average value of the bank prime loan rate over the period); and the

ratio of bank reserves to loans m/` to 0.18 (the average ratio of total reserves of depository

institutions to bank credit of all commercial banks over the period).

We calibrate the parameter qP to match the increase in the stock of nominal reserves over

the period. More speci�cally, we rewrite (C.2) as M̂t = (1 − qP )P̂t − qyŷt, and we assume

conservatively that the Fed increased the stock of nominal reserves over the period only in

response to low in�ation, not in response to low output growth (i.e., qy = 0). This assumption

is conservative because it tends to overestimate qP and, therefore, to make Condition (C.6)

harder to satisfy. Under this assumption, we get

qP = 1− M̂t

P̂t
. (C.7)

Our model has constant reserves and prices at the steady state. In reality, however, reserves

followed a positive trend before the crisis, and the Fed has a positive in�ation target. The Fed

increased the stock of nominal reserves beyond its trend, in response to in�ation below target. A

natural empirical counterpart of (C.7), over the January 2009-November 2015 period, is therefore

qP = 1− (lnM2015:11 − lnM2009:01)−∆M

(lnP2015:11 − lnP2009:01)−∆P
,

whereMt and Pt are measured by the total reserves of depository institutions and the consumer

price index respectively, while ∆M and ∆P denote respectively the �neutral� trend growth rate

in reserves and the targeted growth rate in prices over the January 2009-November 2015 period.

We conservatively set ∆M to zero, thus attributing all of the observed growth in reserves to the

Fed's response to in�ation below target. Like the assumption qy = 0, the assumption ∆M = 0 is

conservative because it tends to overestimate qP and, therefore, to make Condition (C.6) harder

to satisfy. And we set ∆P to 14%, which corresponds to the Fed's 2% annual-in�ation target

over (almost) seven years. We then get qP = 50.0.

Finally, we make conservative assumptions about the values of the steady-state variables hbvb′′

(hb)/vb′(hb) and I. More speci�cally, we set hbvb′′(hb)/vb′(hb), the inverse of the steady-state

Frisch elasticity of bankers' labor supply, to 5. The value 5 for the inverse of a Frisch elasticity of

labor supply lies at the upper end of the range of microeconomic estimates, and is much higher

than values commonly considered in macroeconomics. And we set the net interest rate I − 1 to

0.75% per annum, i.e. 50 basis points per annum above the net IOR rate Im − 1. This value is

much higher than the average value, over the January 2009-November 2015 period, of standard

proxies for I − 1, like the 3-month T-bill rate or the 3-month AA (�nancial or non-�nancial)
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commercial paper rate. Our assumptions about hbvb′′(hb)/vb′(hb) and I are conservative because

they tend to overestimate these two steady-state variables and, therefore, to make Condition

(C.6) harder to satisfy.

The right-hand side of Condition (C.6) depends on the period length, through the ratio (I −
Im)/I`. Since one-period bank loans in our model are working-capital loans, which are short-

term loans in reality, we set the period length to one quarter. Thus, we express all the interest

rates in the ratio (I − Im)/I` as quarterly rates.

We then get the value 705.7 for the right-hand side of Condition (C.6). This value is one order of

magnitude larger than the value 50.0 obtained for the left-hand side of Condition (C.6). We thus

�nd that Condition (C.6) is met by a large margin even under our conservative assumptions.

We conclude that setting exogenously the IOR rate and following the reserves-supply rule still

delivers local-equilibrium determinacy, except for implausible calibrations.

Appendix D: Extended Model With Household Cash

In the main text (Section 3), we show that our benchmark model delivers local-equilibrium

determinacy under exogenous monetary-policy instruments, and we use this determinacy result

to explain the low volatility of in�ation and the absence of signi�cant de�ation at the ZLB.

Our benchmark model, however, is speci�c in that households hold money only in the form

of reserves, in their capacity as bankers. This makes our point stark because banks cannot

collectively change the aggregate nominal quantity of reserves outstanding. In reality, bank

reserves can fall if households demand more cash. In the present appendix, we show that our

results do not unravel when we allow for such leakages out of reserve balances. More speci�cally,

we introduce household cash into our benchmark model through a cash-in-advance constraint;

we derive a su�cient condition for local-equilibrium determinacy in the resulting model, under

an exogenous IOR rate and an exogenous monetary base (made of bank reserves and household

cash); and we argue that this su�cient determinacy condition is likely to be met.

D.1 Introducing Household Cash into the Benchmark Model

We assume that each period is made of a �nancial exchange followed by a goods exchange.

Households acquire cash in the �nancial exchange and use it to buy goods in the goods exchange;

�rms receive this cash in the goods exchange and have to wait until the next period's �nancial

exchange to spend it (repaying loans). Thus, households choose bonds bt, consumption ct, work

hours ht, loans `t, reserves mt, and (now) cash mc
t to maximize the same reduced-form utility

function (1) as previously, subject to the budget constraint

mc
t + bt + `t +mt ≤

mc
t−1 − ct−1

Πt
+
It−1

Πt
bt−1 +

I`t−1

Πt
`t−1 +

Imt−1

Πt
mt−1 + wtht + ωt
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and the cash-in-advance constraint

mc
t ≥ ct, (D.1)

taking all prices (It, I`t , I
m
t , Pt, and wt) as given. Letting λt and λ

c
t denote the Lagrange multi-

pliers on these two constraints respectively, the �rst-order conditions of households' optimization

problem are again (3), (4), (5), (6), (7), and now

λct +
βλt+1

Πt+1
− λt = 0.

The objective of �rm i is now to maximize

Et

{
+∞∑
k=0

(βθ)k
βλt+k+1

λtΠt,t+k+1

[
P ∗t (i) yt+k (i)− I`t+kLt+k(i)− [Wt+kht+k (i)− Lt+k(i)]

]}
,

since the �rm has to wait until the next period to exchange its cash. The �rst-order condition

for the �rm's optimization problem is thus

Et

{
+∞∑
k=0

(βθ)k
βλt+k+1

λtΠt,t+k+1

[
P ∗t (i)−

(
ε

ε− 1

)(
φI`t+k + (1− φ)

) Wt+k

f ′ [ht+k (i)]

]
yt+k (i)

}
= 0,

(D.2)

instead of (12). In the particular case of �exible prices (and in a symmetric equilibrium), this

�rst-order condition becomes

Pt =
ε

ε− 1

[
φI`t + (1− φ)

] Wt

f ′ (ht)
, (D.3)

which replaces (13). None of the other equilibrium conditions stated in Section 2 is changed, ex-

cept the reserve-market-clearing condition (16), which is replaced by the money-market-clearing

condition

mt +mc
t =

Mt

Pt
, (D.4)

since the monetary baseMt controlled by the central bank is now made not only of bank reserves,

but also of household cash. As previously, the equilibrium conditions (3), (5), (9), (10) holding

with equality, and (17) imply the relationship (18) between loans and employment.

D.2 Steady State and Log-Linearization

To derive the necessary and su�cient condition for steady-state existence and uniqueness under

a constant IOR rate (Imt = Im ≥ 1), a constant monetary base (Mt = M > 0), and no discount-

factor shocks (ζt = 1), we �rst note that the steady-state in�ation rate Π is equal to 1 under a

constant monetary base. In turn, Π = 1 and (4) together imply that the steady-state interest

rate on bonds I is equal to 1/β, as previously. Using (3), (5), (9), (17), (18), (D.3), and I = 1/β,

we can rewrite households' �rst-order condition for loans (6) at the steady state as a relationship

between real reserves m and employment h:

Γ` [L (h) ,m] = Ã (h) ≡ u′ [f (h)]

{
β

φ

[(
ε− 1

ε

)
u′ [f (h)] f ′ (h)

v′ (h)
− (1− φ)

]
− 1

}
. (D.5)
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Because the left-hand side of (D.5) is positive, we restrict the domain of the function Ã to (0, h̃),

where h̃ > 0 is implicitly and uniquely de�ned by u′[f(h̃)]f ′(h̃)/v′(h̃) = [φ/β+ (1−φ)]ε/(ε−1).

The function Ã is strictly decreasing (Ã′ < 0), with limh→0 Ã(h) = +∞ and limh→h̃ Ã(h) = 0.

Since Γ`` > 0, L′ > 0, Γ`m < 0, and Ã′ < 0, Equation (D.5) implicitly and uniquely de�nes a

function M̃ which is strictly increasing (M̃′ > 0) and such that

m = M̃ (h) . (D.6)

Using (3), (9), (17), (18), (D.6), and I = 1/β, we can then rewrite households' �rst-order

condition for reserves (7) at the steady state as

F̃ (h) ≡
Γm

[
L (h) ,M̃ (h)

]
u′ [f (h)]

= − (1− βIm) .

The same reasoning as in Appendix A.5, this time applied to F̃ instead of F , shows that the
function F̃ is strictly increasing from −∞ to 0. Therefore, the necessary and su�cient condition

for existence and uniqueness of a steady state is again Im < 1/β.

Log-linearizing the model around its unique steady state, we get the same IS equation (21)

and reserves-demand equation (23) as previously. Using the goods-market-clearing condition

(17) and the binding cash-in-advance constraint (D.1) to rewrite the money-market-clearing

condition (D.4), and then log-linearizing the resulting equation, leads to

M̂t − P̂t = (1− αc) m̂t + αcŷt, (D.7)

where αc ≡ f (h) /[f (h) +M (h)] ∈ (0, 1) denotes the steady-state share of household cash

in the monetary base. Finally, we derive the Phillips curve by following the same steps as in

Appendix B.1. More speci�cally, the log-linearized �rst-order condition is now

P̂ ∗t = (1− βθ)Et

{
+∞∑
k=0

(βθ)k
(
αφi

`
t+k + ŵt+k + P̂t+k − m̂p t+k|t

)}
,

which corresponds to (B.1) without the it+k term; and this log-linearized �rst-order condition

leads to the Phillips curve

πt = βEt {πt+1}+ κ (ŷt − δmm̂t + δiit) (D.8)

with δi ≡ αφΨ/κ > 0, where the term δiit captures the opportunity cost for �rms of holding

their cash from one period to the next.

D.3 Derivation of a Su�cient Determinacy Condition

Using the IS equation (21), the reserves-demand equation (23), the money-market-clearing con-

dition (D.7), the Phillips curve (D.8), and the identity πt = P̂t − P̂t−1, we get the following
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dynamic system in m̂t and ŷt:

Et



m̂t+1

m̂t

ŷt+1

ŷt


 = Ã


m̂t

m̂t−1

ŷt
ŷt−1

+ Et

B̃


imt
µ̂t+1

µ̂t
rt


 , (D.9)

where µ̂t = M̂t − M̂t−1 denotes the log-deviation of the gross growth rate of nominal reserves

µt ≡Mt/Mt−1 from its steady-state value 1,

Ã ≡


1+β−δmκ

β − δiκ
βχi

−1
β

κ
β +

δiχyκ
βχi

0

1 0 0 0
1−δmκ
βσ − 1

σχi
− δiκ

βχiσ
−1
βσ 1 +

χy
σχi

+ κ
βσ +

δiχyκ
βχiσ

0

0 0 1 0

+ αc


−1
βσ

1
βσ

1
βσ

−1
βσ

0 0 0 0
−1
βσ

1
βσ

1
βσ

−1
βσ

0 0 0 0



+
αc

1− αc


1
σχi

+ (1−σ)δmκ
βσ + (1−σ)δiκ

βχiσ
0 −(1−σ)

βσ − χy
σχi
− (1−σ)κ

βσ − (1−σ)δiχyκ
βχiσ

1−σ
βσ

0 0 0 0
0 0 0 0
0 0 0 0



and B̃ ≡


δiκ
β 1 −1

β 0

0 0 0 0
1
σ + δiκ

βσ 0 −1
βσ

−1
σ

0 0 0 0

+
αc

1− αc


−1
σ + (1−σ)δiκ

βσ 1 1−σ
βσ

1
σ

0 0 0 0
0 0 0 0
0 0 0 0

 .
Since this system has two predetermined variables (m̂t−1 and ŷt−1) and two non-predetermined

variables (m̂t+1 and ŷt+1), the necessary and su�cient condition for local-equilibrium deter-

minacy is that the matrix Ã have two eigenvalues inside the unit circle and two eigenvalues

outside. We note that Ã can be obtained from A by replacing qP , qy, κ, and δm by respectively

1/(1−αc), αc/(1−αc), κ̃ ≡ (1+δiχy/χi)κ, and δ̃m ≡ (δmχi+δi)/(χi+δiχy) inA. Therefore, we

deduce from Appendix C.2 that Ã has two eigenvalues inside the unit circle and two eigenvalues

outside for any θ ∈ (0, 1) if and only if

K̃ ≡ −1

σ
+

[
1 +

(
αc

1− αc

)(
σ − 1

σ

)]
δ̃m <

1− δ̃mχy
2σχi (1− αc)

, (D.10)

where the right-hand side is positive since 1− δ̃mχy = (1− δmχy)χi/(χi + δiχy) > 0 (as follows

from the second inequality in (B.11)). We have

K̃ <
−1

σ
+

δ̃m
1− αc

<
−1

σ
+

1

1− αc

(
δm +

δi
χi

)
<

1

σ

[
−1 +

1

1− αc

(
−α`

Γ`mm

Γ`
− αm

Γmmm

Γm

)]
≤ K̄ ≡ 1

σ

[
−1 +

1

1− αc

(
−α`

Γ`mm

Γ`
+ αm

Γ`m`

Γm

)]
,

Online Appendix − 26



where the last inequality follows from (B.14). In turn, using �rst (6) and (7), and then (10)

with equality and (D.3), we get sequentially

K̄ =
1

σ

[
−1 +

(
1− βIm

1− αc

)(
I

I`
Γ`mm

Γm
+

1

βIm
Γ`m`

Γm

)]
=

1

σ

{
−1 +

(
1− βIm

1− αc

)[[(
ε− 1

ε

)(
f ′h

f

)
−
(

1− φ
φ

)(
`

y

)]−1(m
βy

)
+

1

βIm

]
Γ`m`

Γm

}

≤ 1

σ

{
−1 +

(
1− βIm

1− αc

)[
1

β

(
ε

ε− 1

)(
f

f ′h

)(
m

y

)
+

1

βIm

]
Γ`m`

Γm

}
.

Now consider the following condition, which states that the last expression is negative:(
1− βIm

1− αc

){
1

β

(
ε

ε− 1

)[
f (h)

hf ′ (h)

](
m

y

)
+

1

βIm

}[
`Γ`m (`,m)

Γm (`,m)

]
< 1. (D.11)

This condition implies K̄ < 0, which in turn implies K̃ < 0, which in turn implies (D.10), which

in turn implies that Ã has two eigenvalues inside the unit circle and two eigenvalues outside,

which �nally implies determinacy.

D.4 Assessment of the Su�cient Determinacy Condition

To assess whether Condition (D.11) is likely to be met or not, we proceed broadly along the

same lines as in Appendix C.3. We consider, for simplicity, a Cobb-Douglas speci�cation for the

production function f b:

f b
(
hbt ,mt

)
≡ Ab

(
hbt

)1−ς
(mt)

ς ,

where Ab > 0 and 0 < ς < 1. This speci�cation implies that the steady-state elasticity of Γm

that appears in Condition (D.11) can be rewritten as

`Γ`m (`,m)

Γm (`,m)
=

(
1

1− ς

)[
1 +

vb′′
(
hb
)
hb

vb′ (hb)

]
.

Our Cobb-Douglas speci�cation for f b also implies that households' �rst-order conditions (6)

and (7), at the steady state, can be combined to get

ς =
(m
`

)(I − Im
I` − I

)
.

Therefore, Condition (D.11) can be rewritten as

(
I − Im

1− αc

){(
ε

ε− 1

)[
f (h)

hf ′ (h)

](
m

y

)
+

1

Im

} 1 +
vb′′(hb)hb

vb′(hb)

1−
(
m
`

) (
I−Im
I`−I

)
 < 1. (D.12)

We set the steady-state variables Im, I`, m/`, αc, and m/y to match some features of the US

economy during the 2008-2015 ZLB episode. More speci�cally, as in Appendix C.3, we set the

net interest rates Im − 1 and I` − 1 to 0.25% and 3.25% per annum respectively, and the ratio
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m/` to 0.18. We set the steady-state share of household cash in the monetary base, αc, to

0.39, which is the average value of the ratio between the currency component of M1 and the

monetary base from January 2009 to November 2015. And we set the ratio m/y to 0.40, which

is the average value of the ratio between total reserves of depository institutions and quarterly

GDP from 2009Q1 to 2015Q4.

We make standard assumptions about the steady-state elasticity of output to labor hf ′(h)/f(h)

and the elasticity of substitution between goods ε. More speci�cally, we set the former to 0.66,

and the latter to 6 (implying a 20% markup).

Finally, we make the same conservative assumptions as in Appendix C.3 about the values

of the steady-state variables hbvb′′(hb)/vb′(hb) and I. More speci�cally, we set the elasticity

hbvb′′(hb)/vb′(hb) to 5, and the net interest rate I − 1 to 0.75% per annum. These assump-

tions are conservative because they tend to overestimate these two steady-state variables and,

therefore, to make Condition (D.12) harder to satisfy.

The left-hand side of Condition (D.12) depends on the period length through the ratio (I −
Im)/Im (and only through this ratio, since the ratio (I − Im)/y does not depend on the period

length). We set the period length to one quarter, as in Appendix C.3. Thus, we express all the

interest rates in the ratio (I − Im)/Im as quarterly rates.

We then get the value 0.02 for the left-hand side of Condition (D.12). This value is one to

two orders of magnitude smaller than 1. We thus �nd that Condition (D.12) is met by a

large margin even under our conservative assumptions. We conclude that the introduction of

household cash into the monetary base does not a�ect the ability of our model to deliver local-

equilibrium determinacy under an exogenous IOR rate and an exogenous monetary base, except

for implausible calibrations.

Appendix E: Extended Model With Liquid Government Bonds

In this appendix, we motivate, present and analyze our extended model with liquid government

bonds. We show that this model can account not only for the three key features of in�ation

during ZLB episodes (like our benchmark model), but also for the negative spread between

T-bill and IOR rates observed during these episodes (unlike our benchmark model). More

speci�cally, we show that this model has an equilibrium in which the return on government

bonds is below the IOR rate, while demand for bank reserves is not satiated. This equilibrium

coincides with the equilibrium of our benchmark model (without liquid bonds), in the sense that

all the endogenous variables that are common to both models, except the lump-sum transfer Tt,

take the same equilibrium values. We show the existence of this equilibrium under two simple

parameter restrictions, and we show how one of these parameter restrictions can be relaxed

without a�ecting our results.
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E.1 Satiation vs. Non-Satiation of Demand for Reserves

In Sections 3 and 4, we have shown that our benchmark model can broadly account for three

key observations about US in�ation during ZLB episodes (no signi�cant de�ation, little in�ation

volatility, and no signi�cant in�ation following QE policies). These results rest on the assumption

that demand for bank reserves got close to satiation, but did not reach full satiation, i.e. that

bank reserves carried a small but positive convenience yield (Imt < It and Γm > 0). If we

allowed for a �nite satiation point in the demand for reserves and if demand for reserves were

fully satiated (Imt = It and Γm = 0), then our results would fall apart as follows: (i) in the

local analysis of Section 3, our model would be isomorphic to the basic NK model (δm = 0

and it = imt ), and would generate indeterminacy under a permanent interest-rate peg; and (ii)

without price-level determinacy, the numerical simulation of QE2 in Section 4 would not be

possible.

As we noted in the Introduction, our non-satiation assumption stands in contrast to views often

expressed about the US economy in recent years. One argument making a case for satiation of

demand for reserves is the fact that the second and third rounds of quantitative easing (QE2 and

QE3) had no apparent in�ationary consequences, as Reis (2016) and Cochrane (2018) point out.

On this front, our counter-argument is simply that this fact may also be consistent with demand

for reserves being close to satiation, rather than fully satiated, as our numerical simulation of

QE2 in Section 4 suggests.

In the present appendix, we address a second argument that goes against our non-satiation

view. This argument is the fact that T-bill returns were often below the IOR rate during ZLB

episodes. We do not think this fact contradicts our claim that reserves still had a positive

marginal convenience yield during this period. The lower T-bill returns, we argue, could re�ect

strong demand by non-bank entities − using T-bills as collateral or international reserve asset,

for instance. We formalize our counter-argument by introducing government bonds providing

liquidity services into our benchmark model. We show that our model with liquid bonds has

an equilibrium in which the return on government bonds is below the IOR rate. Moreover, this

equilibrium of our model with liquid bonds coincides with the equilibrium of our benchmark

model (without liquid bonds), in the sense that all the endogenous variables that are common

to both models, except the lump-sum transfer Tt, take the same equilibrium values. So, all the

results that we have obtained in our benchmark model in Sections 3 and 4 still hold in our model

with liquid bonds.

E.2 Liquidity of Government Bonds

Our benchmark model abstracts from government bonds and any role they may play in facil-

itating transactions. In reality, banks may hold government bonds (or other liquid assets), in
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addition to reserves, for liquidity management. Some regulatory constraints that give rise to a

convenience yield for reserves − like the constraint on �high-quality liquid assets� imposed on

US banks − can also be satis�ed by holding government bonds. From this (regulatory) vantage

point, bonds and reserves are perfect substitutes in satisfying liquidity needs. But government

bonds are not as useful as reserves in satisfying the intra-day liquidity needs that arise from

banking transactions, because bonds can either be sold for next-day settlement or used in repo

transactions arranged to obtain liquidity, while reserves are readily available for any transaction

− as Bush et al. (2019) elaborate.

Government bonds also provide a convenience yield to many non-bank entities (e.g. by serving

as collateral or international reserve asset) and bene�t from regulations (like restrictions on the

asset portfolios of US money-market mutual funds). So, the observed returns on government

bonds may re�ect their convenience yield. If the returns are su�ciently attractive compared

to the IOR rate, banks may hold government bonds to satisfy liquidity needs and regulatory

constraints. If not, banks may hold mostly reserves for liquidity management.

Our model abstracts from non-bank �nancial institutions and foreign entities that may hold

bonds. To formalize our main point, we will assume that workers get utility from government

bonds (instead of modeling, say, a pension fund that holds bonds on workers' behalf). We

will show that bankers may use government bonds for liquidity management if the IOR rate is

su�ciently low compared to the equilibrium return from holding liquid bonds; but bankers will

only use reserves for liquidity management when the IOR rate is su�ciently high. Although we

don't explicitly model inside assets like federal-funds loans, we have in mind that our equilibrium

with a relatively high IOR rate can also represent observed episodes in which banks don't lend

federal funds, and the federal-funds rate is below the IOR rate. Our main point is that �nancial

institutions that don't have direct access to the IOR rate may hold these assets in equilibrium,

while banks hold reserves with a positive marginal convenience yield.3

E.3 Equilibrium Conditions Related to Households

As in our benchmark model (presented in Section 2), the representative household consists of

workers and bankers, and gets utility from consumption (ct) and disutility from labor (ht for

workers, hbt for bankers). We now assume that workers also get utility from holding government

bonds (bwt ), and bankers may use government bonds (bbt) as well as reserves (mt) to produce

loans (`t). As before, we make a substitution for hbt in households' primitive utility function and

get the following reduced-form utility function:

Ut = Et

{ ∞∑
k=0

βkζt+k

[
u (ct+k)− v (ht+k)− Γ

(
`t+k,mt+k + ηbbt+k

)
+ z

(
bwt+k

)]}
,

3Bech and Klee (2012) present a model of segmentation in the federal-funds market in which limited access
to the IOR rate (and other restrictions on trading) push the federal-funds rate below the IOR rate.
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where η ∈ (0, 1]. The function z, de�ned over R>0, is twice di�erentiable, strictly increasing

(z′ > 0), and strictly concave (z′′ < 0); it also satis�es the usual Inada conditions. Values of

η below unity may capture the fact that in reality reserves are more useful than government

bonds for liquidity management because they provide immediate intra-day liquidity to banks

(as discussed above). We allow for η < 1 to show that T-bill returns can be below the IOR rate

even when T-bills provide smaller liquidity services than reserves to banks.

In the interest of realism (to make sure some reserves are always held in equilibrium), we

also assume that the central bank imposes reserve requirements on banks. Since our model

consolidates bankers and workers into households (thus, abstracting from deposits), we specify

the reserve requirement as

mt ≥ ψ`t, (E.1)

where ψ > 0. The household budget constraint, expressed in real terms, is

ct + bt + bbt + bwt + `t +mt ≤
It−1

Πt
bt−1 +

Ibt−1

Πt

(
bbt−1 + bwt−1

)
+
I`t−1

Πt
`t−1 +

Imt−1

Πt
mt−1 +wtht + τt,

where Ibt denotes the gross nominal interest rate on government bonds (and bt represents a

private bond in zero net supply, as we indicated in Section 2). We let λt and λrt denote the

Lagrange multipliers on the period-t budget constraint and reserve requirement (respectively).

The optimality conditions are

λt = ζtu
′ (ct) ,

λtwt = ζtv
′ (ht) ,

λt = βItEt
{
λt+1

Πt+1

}
, (E.2)

λt = ζtz
′ (bwt ) + βIbtEt

{
λt+1

Πt+1

}
, (E.3)

ζtΓ`

(
`t,mt + ηbbt

)
+ λt + ψλrt = βI`tEt

{
λt+1

Πt+1

}
, (E.4)

ζtΓm

(
`t,mt + ηbbt

)
+ λt = λrt + βImt Et

{
λt+1

Πt+1

}
, (E.5)

and

(mt − ψ`t)λrt = 0.

We must also have

ηζtΓm

(
`t,mt + ηbbt

)
+ λt ≥ βIbtEt

{
λt+1

Πt+1

}
(E.6)

and bbt ≥ 0, with complementary slackness.
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E.4 Other Equilibrium Conditions

The remaining equilibrium conditions involve minor adjustments to our presentation in Sub-

sections 2.2-2.4 (for �rms, the government, and market clearing), as we describe below. The

equilibrium conditions associated with �rms don't change. For the government, we replace the

consolidated budget constraint (14) by

Mt +Bt = Imt−1Mt−1 + Ibt−1Bt−1 + Tt, (E.7)

where Bt denotes the nominal stock of one-period public debt (held outside the central bank). A

Ricardian �scal policy adjusts the lump-sum transfer Tt to stabilize the real public debt around

a steady-state target b∗ > 0. The market-clearing conditions of Subsection 2.4 still apply − in

particular the condition (15), given that private bonds are in zero net supply. In addition, we

now have the market-clearing condition for government bonds:

bwt + bbt =
Bt
Pt

. (E.8)

E.5 Characterization of our Equilibrium of Interest

The household optimality conditions above admit a solution with 1 = Imt < Ibt that may

represent the period before interest payment on reserves in the US (i.e. before 2008). If η is

large enough, such a solution may have binding reserve requirements and bbt > 0. In this case,

banks use government bonds − and if we extended our model, they could use inside assets like

commercial paper − to manage the liquidity of their portfolios.

We are, however, interested in a candidate equilibrium in which banks do not use government

bonds (bbt = 0), the reserve requirement is not binding (λrt = 0), and the IOR rate is above the

government-bond yield (Imt > Ibt ). This candidate equilibrium may capture − admittedly, in

a stark way − some features of US bank portfolios and T-bill returns in the aftermath of the

�nancial crisis.

In Appendix E.6, we prove the existence of such an equilibrium under two parameter restrictions.

The �rst restriction is that the minimal reserves-to-loans ratio imposed by the central bank, ψ,

should be lower than the steady-state value taken by the reserves-to-loans ratio in our benchmark

model. This restriction is necessary for the reserve requirement (E.1) to be slack (λrt = 0). The

second restriction is that the steady-state marginal liquidity service of government bonds, z′(b∗),

should be large enough for the interest rate on government bonds to be lower than the IOR rate

(Ibt < Imt ).

We now show that this equilibrium of interest (with bbt = λrt = 0 and Ibt < Imt ) coincides with

the equilibrium of our benchmark model, in the sense that all the endogenous variables that are

common to both models, except the lump-sum transfer Tt, take the same equilibrium values.
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Intuitively, in this equilibrium, banks hold only reserves (bbt = 0) because they pay more interest

than government bonds (Ibt < Imt ) and are at least as liquid as government bonds (η ≤ 1); and

since banks do not hold government bonds (bbt = 0) and face a non-binding reserve requirement

(λrt = 0), they behave in exactly the same way as in our benchmark model.

To show that our equilibrium of interest (in the model with liquid bonds) coincides with the equi-

librium of our benchmark model (without liquid bonds), we �rst use (E.2) to rewrite households'

optimality conditions (E.3), (E.4), (E.5), and (E.6) in the following simpler forms:

Ibt
It

= 1− ζtz
′ (bwt )

λt
, (E.9)

I`t
It

= 1 +
ζtΓ`

(
`t,mt + ηbbt

)
λt

+ ψ
λrt
λt
, (E.10)

Imt
It

= 1 +
ζtΓm

(
`t,mt + ηbbt

)
λt

− λrt
λt
, (E.11)

and
Ibt
It
≤ (1− η) + η

Imt
It

+ η
λrt
λt
. (E.12)

In our equilibrium of interest, because bbt = λrt = 0, the equilibrium conditions (E.10) and (E.11)

collapse to
I`t
It

= 1 +
ζtΓ` (`t,mt)

λt
and

Imt
It

= 1 +
ζtΓm (`t,mt)

λt
.

These conditions are identical to the equilibrium conditions (6) and (7) of our benchmark model.

Therefore, our equilibrium of interest satis�es all the equilibrium conditions of our benchmark

model (listed in Section 2), except the government budget constraint (14), which is replaced by

(E.7). As a consequence, all the endogenous variables that are present in both models take the

same values in our equilibrium of interest as in the equilibrium of our benchmark model, except

the lump-sum transfer Tt appearing in the government budget constraint. So, we conclude that

the introduction of liquid government bonds into our benchmark model enables us to account

for the negative spread between Treasury-bill and IOR rates observed during ZLB episodes,

without a�ecting in any way the ability of the model to account for the three key features of

in�ation during ZLB episodes (i.e., without a�ecting any of the results obtained in Sections 3

and 4).

E.6 Existence of our Equilibrium of Interest

We prove the existence of our equilibrium of interest under two parameter restrictions. The �rst

restriction is

ψ < ψ̄, (E.13)

where ψ̄ denotes the steady-state value of the reserves-to-loans ratio mt/`t in our benchmark

model (without liquid bonds). As we will see, this restriction will ensure that the reserve
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requirement (E.1) is not binding in our model with liquid bonds. The second restriction is

max

[
1,

1

β
− z′ (b∗)

βλ̄

]
< Im <

1

β
, (E.14)

where λ̄ denotes the upper bound of the steady-state values taken by the marginal utility of

consumption λt as Im varies from 1 to 1/β in our benchmark model (this upper bound being

reached for Im = 1). As we will see, that restriction will ensure that the interest rate on

government bonds Ibt is lower than the IOR rate Imt in our model with liquid bonds. In fact,

that restriction will turn out to be su�cient but not necessary for Ibt < Imt ; for simplicity, we

relegate to Appendix E.7 the statement of the (more complex) parameter restriction that is

necessary and su�cient for Ibt < Imt .

We proceed in two steps: we show �rst the existence of our steady-state equilibrium of interest,

and then the existence of our dynamic equilibrium of interest. In the �rst step, to show that our

model with liquid bonds, under the parameter restrictions (E.13) and (E.14), has a steady-state

equilibrium with Ib < Im and bb = λr = 0, we start from a candidate steady-state equilibrium

with bb = λr = 0. In this candidate equilibrium, as follows from the analysis above, all the

endogenous variables that also appear in our benchmark model, except the lump-sum transfer

Tt, take the same steady-state values as in that model. Using these values and bb = 0, we then

get residually the steady-state values of the other endogenous variables: (i) bw and B from the

market-clearing condition (E.8) and the steady-state target B/P = b∗; (ii) Ib from the �rst-order

condition (E.9); and (iii) T from the consolidated budget constraint of the government (E.7).

At this stage, all equality conditions for steady-state equilibrium are satis�ed, and the steady-

state value of all endogenous variables is pinned down. What remains to be shown is that: (i)

the inequality conditions for steady-state equilibrium, i.e. the steady-state versions of (E.1) and

(E.12), are satis�ed as strict inequalities, implying that the candidate steady-state equilibrium

is indeed a steady-state equilibrium; and (ii) this equilibrium has the property that Ib < Im. We

�rst establish this last inequality by using in turn the �rst-order condition (E.9) with I = 1/β

and bw = b∗, the inequality λ ≤ λ̄, and the parameter restriction (E.14), to get

Ib =
1

β
− z′ (b∗)

βλ
≤ 1

β
− z′ (b∗)

βλ̄
< Im.

In turn, the property Ib < Im, together with Im < I and λr = 0, implies that the steady-state

version of (E.12) is satis�ed as a strict inequality:

Ib

I
< (1− η) + η

Im

I
+ η

λr

λ
.

Finally, the parameter restriction (E.13) straightforwardly implies that the steady-state version

of (E.1) is satis�ed as a strict inequality. We conclude that our model with liquid bonds does

indeed have a steady-state equilibrium with Ib < Im and bb = λr = 0 that coincides with the

steady-state equilibrium of our benchmark model. In this equilibrium, banks hold only reserves
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(bb = 0) because they pay more interest than government bonds (Ib < Im) and are at least as

liquid as government bonds (η ≤ 1).

In the second step, we proceed similarly to show the existence of a dynamic equilibrium with

Ibt < Imt and bbt = λrt = 0. More speci�cally, we start from a candidate equilibrium with

bbt = λrt = 0. In this candidate equilibrium, as follows from the analysis above, all the endogenous

variables that also appear in our benchmark model, except the lump-sum transfer Tt, take the

same equilibrium values as in that model. Using these values and bbt = 0, we then get residually

the equilibrium values of the other endogenous variables (expressed as log-deviations from their

steady-state values, and denoted by letters with hats): (i) b̂wt and B̂t from the log-linearized

version of the market-clearing condition (E.8) and the �scal-policy rule; (ii) Îbt from the log-

linearized version of the �rst-order condition (E.9); and (iii) T̂t from the log-linearized version

of the government's consolidated budget constraint (E.7).

At this stage, all equality conditions for equilibrium are satis�ed, and the equilibrium value of

all endogenous variables is pinned down. What remains to be shown is that: (i) the inequality

conditions for equilibrium, i.e. (E.1) and (E.12), are satis�ed as strict inequalities, implying that

the candidate equilibrium is indeed an equilibrium; and (ii) this equilibrium has the property

that Ibt < Imt . Now, we have just shown that these three strict inequalities are satis�ed at the

steady state; therefore, by continuity, they are also satis�ed in the neighborhood of this steady

state, under the standard assumption of small enough shocks. As a consequence, our model

with liquid bonds does indeed have a dynamic equilibrium with Ibt < Imt and bbt = λrt = 0, and

this equilibrium coincides with the dynamic equilibrium of our benchmark model.

E.7 Relaxation of a Parameter Restriction

To prove the existence of our equilibrium of interest in Appendix E.6, we have used the parameter

restriction (E.14), which involves the reduced-form parameter λ̄. This restriction, however, can

be harmlessly relaxed to some extent, because our proof only rests on the weaker condition

max

[
1,

1

β
− z′ (b∗)

βλ

]
< Im <

1

β
, (E.15)

where the steady-state value λ depends on several parameters of the model − in particular β

and Im, but not b∗. To re-state (E.15) as a condition involving only parameters, we write λ as

λ = Λ (βIm) ,

where the function Λ is de�ned by

Λ(x) ≡ u′
{
f
[
F−1 (x− 1)

]}
for x ∈ (−∞, 1], where in turn the function F is de�ned in Subsection 3.1. Given the properties

of F , the function Λ is strictly decreasing (Λ′ < 0), with limx→−∞ Λ(x) = +∞. Therefore, there
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exists a unique x∗ ∈ (−∞, 1) such that

1− z′ (b∗)

Λ (x∗)
= x∗.

We can then re-state (E.15) as

max

(
1,
x∗

β

)
< Im <

1

β
,

where the reduced-form parameter x∗ depends on several parameters of the model − in particular

b∗, but not β nor Im.
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