Introduction	Model	Backward I	Backward II	Forward	Conclusion
0000000	00	00000	0000	0000	0

A Model of Post-2008 Monetary Policy

Behzad Diba Olivier Loisel Georgetown University

December 2021

Crest

Introduction	Model	Backward I	Backward II	Forward	Conclusion
●000000	00	00000	0000	0000	0
· ·					
Overview	1				

- Since the end of 2008, the Federal Reserve has been communicating its monetary policy in terms of **two instruments**:
 - the interest rate on bank reserves (IOR rate),
 - the size of its balance sheet.
- We propose a simple model in which the central bank sets these two instruments.
- Looking **backward**, we show that the model can qualitatively account for key observations about US **inflation** and **money-market rates** during the 2008-2015 zero-lower-bound (ZLB) episode.
- Looking **forward**, we explore the model's implications for the **normalization** and the **operational framework** of monetary policy.

Introduction	Model	Backward I	Backward II	Forward	Conclusion
000000	00	00000	0000	0000	0

Challenges to Existing Theories

- During the ZLB episode, inflation was **neither very low, nor very volatile, nor very large**.
- Cochrane (2018): "The long period of quiet inflation at near-zero interest rates, with large quantitative easing, suggests that core monetary doctrines are wrong."
 - New Keynesian models imply large deflation & inflation volatility at the ZLB.
 - Monetarist models imply large inflation following quantitative easing (QE).
- Additional challenge to **monetarist** models: T-Bill rates dropped below the IOR rate during the ZLB episode (and beyond), suggesting money demand was **satiated**.

Introduction	Model	Backward I	Backward II	Forward	Conclusion
00000	00	00000	0000	0000	0

US Inflation, 2001-2021

Introduction	Model	Backward I	Backward II	Forward	Conclusion
000000	00	00000	0000	0000	0

US Interest Rates, 2008-2021

(in percent per year)

Introduction	Model	Backward I	Backward II	Forward	Conclusion
0000000	00	00000	0000	0000	0

Looking Backward

- Our model introduces a monetarist element **bank reserves** into the basic New Keynesian (NK) model (Woodford, 2003, Galí, 2015).
- This monetarist element implies **no significant deflation** and **little inflation volatility** at the ZLB.
- The model can account for no significant inflation following QE if
 - the demand for reserves is close to satiation,
 - the monetary expansion is perceived as temporary.
- An extension of our model (with T-bills providing liquidity services to non-bank financial institutions) can push **T-bill rates below the IOR rate** without requiring satiation of demand for reserves.

Introduction	Model	Backward I	Backward II	Forward	Conclusion
0000000	00	00000	0000	0000	0

Looking Forward

- Our model always implies deflationary effects of **monetary-policy normalization** (current and expected future IOR-rate hikes and balance-sheet contractions).
- In our model, **corridor and floor systems** have different implications for equilibrium determinacy:
 - the condition for local-equil. determinacy is weaker under the floor system,
 - however, the floor system may generate global-equilibrium indeterminacy.

Introduction	Model	Backward I	Backward II	Forward	Conclusion
000000	00	00000	0000	0000	0

Related Literature

- **Price-level determination**: Canzoneri and Diba (2005), Hagedorn (2018), Benigno (2020).
- Quantitative easing: Cúrdia and Woodford (2011), Gertler and Karadi (2011), Ennis (2018), Sims et al. (2020).
- NK puzzles and paradoxes: Carlstrom et al. (2015), Cochrane (2017), Diba and Loisel (2021).
- Neo-Fisherian effects: Schmitt-Grohé and Uribe (2017), Bilbiie (2018).
- Floor vs. corridor systems: Arce et al. (2019), Piazzesi et al. (2019).

Introduction	Model	Backward I	Backward II	Forward	Conclusion
0000000	•0	00000	0000	0000	0

Households

• The representative household consists of **workers** and **bankers**, and their intertemporal **utility function** is

$$U_{t} = \mathbb{E}_{t} \left\{ \sum_{k=0}^{\infty} \beta^{k} \zeta_{t+k} \left[u(c_{t+k}) - v(h_{t+k}) - v^{b}(h_{t+k}^{b}) \right] \right\}.$$

• Bankers use their own labor h_t^b and real reserves m_t to produce loans:

$$\ell_t = f^b\left(h_t^b, m_t\right).$$

- We can invert f^b and rewrite bankers' labor disutility as $v^b(h^b_t) = \Gamma(\ell_t, m_t)$.
- The first-order conditions imply $I_t^{\ell} > I_t > I_t^m$ (loans pay more interest than bonds, which pay more interest than reserves).

Introduction	Model	Backward I	Backward II	Forward	Conclusion
0000000	0●	00000	0000	0000	0

Firms and Central Bank

- Firms are monopolistically competitive and owned by households.
- They use workers' labor to produce output: $y_t = f(h_t)$.
- They have to borrow a fraction $\phi \in (0, 1]$ of their nominal wage bill $P_t \ell_t = \phi W_t h_t$ in advance from banks, at the gross nominal interest rate l_t^{ℓ} .
- Prices can be **sticky** à la Calvo (1983), with a degree of price stickiness $\theta \in [0, 1)$.
- The central bank has two independent instruments:
 - the (gross) nominal interest rate on reserves $I_t^m \ge 1$,
 - the quantity of nominal reserves $M_t > 0$.

Introduction	Model	Backward I	Backward II	Forward	Conclusion
000000	00	00000	0000	0000	0

Local Analysis I

- We assume that I_t^m and M_t are set exogenously around $I^m \in [1, \beta^{-1})$ and M > 0, and get a **unique steady state** (in which I^m pins down $m \equiv M/P$, and M pins down P).
- We log-linearize the model around its unique steady state and get:

$$\begin{aligned} \widehat{y}_t &= \mathbb{E}_t \left\{ \widehat{y}_{t+1} \right\} - (1/\sigma) \left(i_t - \mathbb{E}_t \left\{ \pi_{t+1} \right\} - r_t \right), \\ \pi_t &= \beta \mathbb{E}_t \left\{ \pi_{t+1} \right\} + \kappa \left(\widehat{y}_t - \delta_m \widehat{m}_t \right), \\ \widehat{m}_t &= \chi_y \widehat{y}_t - \chi_i \left(i_t - i_t^m \right). \end{aligned}$$

• These equations lead to a dynamic equation for the price level \widehat{P}_t of type

$$A_{2}\mathbb{E}_{t}\{\widehat{P}_{t+2}\} + A_{1}\mathbb{E}_{t}\{\widehat{P}_{t+1}\} + A_{0}\widehat{P}_{t} + A_{-1}\widehat{P}_{t-1} = Z_{t},$$

where Z_t is exogenous (function of r_t , i_t^m , and \hat{M}_t).

• We show that the roots of the characteristic polynomial are always three real numbers ρ , ω_1 , and ω_2 such that $0 < \rho < 1 < \omega_1 < \omega_2$.

Introduction	Model	Backward I	Backward II	Forward	Conclusion
000000	00	0000	0000	0000	0

Local Analysis II

- So, we always get local-equilibrium determinacy.
- The model makes inflation depend on expected future shocks in a way that decreases (exponentially) with the horizon of shocks:

$$\pi_{t} = -(1-\rho)\,\widehat{P}_{t-1} + \frac{\mathbb{E}_{t}}{\omega_{2}-\omega_{1}} \left\{ \sum_{k=0}^{+\infty} \underbrace{\left(\omega_{1}^{-k-1} - \omega_{2}^{-k-1}\right)}_{\text{decreases with }k} Z_{t+k} \right\}$$

In particular, for a temporary ZLB episode caused by a negative discount-factor shock (*i*^m_t − *r*_t = *z*^{*} > 0 for 0 ≤ *t* ≤ *T*), we have

$$\pi_{0} = -(1-\rho)\,\widehat{P}_{t-1} + \frac{-\kappa z^{*}}{\beta\sigma\left(\omega_{2}-\omega_{1}\right)}\sum_{k=0}^{T}\underbrace{\left(\omega_{1}^{-k-1}-\omega_{2}^{-k-1}\right)}_{\text{decreases with }k}.$$

Introduction	Model	Backward I	Backward II	Forward	Conclusion
000000	00	0000	0000	0000	0

Local Analysis III

• By contrast, the basic NK model generates local-equilibrium indeterminacy under an exogenous interest rate; and, for the same temporary ZLB episode, we have

$$\pi_{0} = \frac{-\kappa z^{*}}{\beta \sigma \left(\omega_{b} - \rho_{b}\right)} \sum_{k=0}^{T} \underbrace{\left(\rho_{b}^{-k-1} - \omega_{b}^{-k-1}\right)}_{\text{increases with } k},$$

where $ho_b \in (0,1)$ and $\omega_b > 1$ denote the roots of the characteristic polynomial.

- So, relatively to the basic NK model, our model will typically imply
 - a much smaller deflation (i.e. $|\pi_0|$ much smaller),
 - a much less volatile inflation (in response to expected future shocks).
- We show that these results are essentially robust to
 - the endogenization of nominal reserves,
 - the introduction of household cash.

0000000 00 000 0 0000 0000 0	Introduction	Model	Backward I	Backward II	Forward	Conclusion
	000000	00	00000	0000	0000	0

Global Analysis: Steady State

- We assume flexible prices ($\theta = 0$), no discount-factor shocks ($\zeta_t = 1$), and
 - a constant growth rate of reserves: $\mu_t \equiv M_t/M_{t-1} = \mu > 0$,
 - a constant IOR rate: $I_t^m \in [1, \mu/\beta)$.
- We get a dynamic equation of type $1 + \mathcal{F}(h_t) = (\beta I^m / \mu) \mathbb{E}_t \{ \mathcal{G}(h_{t+1}) / \mathcal{G}(h_t) \}.$
- We get a unique constant-inflation equilibrium (in which gross inflation Π_t equals μ). At this unique steady state, I^m and μ pin down m, and M_t pins down P_t .
- So, our monetarist model has **no "unintended" deflationary ZLB steady state** à la Benhabib et al. (2001a, 2001b).
- At the ZLB ($l^m = 1$), the model rules out steady-state deflation provided that $\mu \ge 1$.

Introduction	Model	Backward I	Backward II	Forward	Conclusion
000000	00	00000	0000	0000	0

Global Analysis: Dynamic Equilibria

- We also get dynamic equilibria with below-steady-state inflation (Π_t < μ) if and only if I^m > μ.
- In these equilibria,
 - the economy converges over time to satiation of demand for reserves,
 - so, the real return on reserves, I^m/Π_t , converges over time to $1/\beta$,
 - so, gross inflation Π_t converges over time to βI^m ,
 - so, the asymptotic gross growth rate of real reserves is $\mu/(\beta I^m)$,
 - so, the transversality condition is satisfied if and only if $I^m > \mu$.
- At the ZLB ($l^m = 1$), the model rules out dynamic equilibria with below-steadystate inflation provided that $\mu \ge 1$ (as in Obstfeld and Rogoff, 1983, Benhabib et al., 2002).

Introduction	Model	Backward I	Backward II	Forward	Conclusion
000000	00	00000	●000	0000	0

Numerical Simulation of QE2 I

- We conduct a **non-linear numerical simulation** of (one to four times) QE2 in our model with sticky prices.
- To that aim,
 - we consider iso-elastic functional forms for the production and utility functions,
 - we calibrate the model to match some features of the US economy in 2010.
- We get very small inflationary effects under two conditions:
 - demand for reserves is close to satiation (i.e. I^m is close to $I = \mu/\beta$),
 - the monetary expansion is perceived as temporary.
- When I^m is close to I, Γ_m is close to 0, and the reserves-market-clearing condition

$$\Gamma_m\left(\ell_t, \frac{M_t}{P_t}\right) = -\left(\frac{I_t - I_t^m}{I_t}\right) u'(c_t)$$

implies that a large increase in M_t can be absorbed by a small drop in $I_t - I_t^m$ without changing P_t by much.

Introduction	Model	Backward I	Backward II	Forward	Conclusion
000000	00	00000	0000	0000	0

Numerical Simulation of QE2 II

- In the benchmark calibration used above, the steady-state spread $I I^m$ is 10 basis points, and the expected duration of the monetary expansion is 5 years.
- The increase in annualized inflation would roughly double if the steady-state spread $I I^m$ were 20 basis points, or if the expected duration of the monetary expansion were 10 years.

Introduction	Model	Backward I	Backward II	Forward	Conclusion
000000	00	00000	0000	0000	0

Extension With Liquid Government Bonds I

- One argument against our **non-satiation assumption** is that T-bill rates dropped below the IOR rate during the ZLB episode.
- To reconcile our model with this observation, we introduce **government bonds providing liquidity services** to
 - banks (which have access to the IOR rate),
 - other financial institutions (which don't).
- We assume that workers get utility from holding government bonds (b^w_t), and that bankers may use reserves (m_t) and government bonds (b^b_t) to produce loans (l_t):

$$U_{t} = \mathbb{E}_{t} \left\{ \sum_{k=0}^{\infty} \beta^{k} \zeta_{t+k} \left[u(c_{t+k}) - v(h_{t+k}) - \Gamma\left(\ell_{t+k}, m_{t+k} + \eta b_{t+k}^{b}\right) + z\left(b_{t+k}^{w}\right) \right] \right\}$$

where $\eta \in (0, 1]$.

Introduction	Model	Backward I	Backward II	Forward	Conclusion
0000000	00	00000	000●	0000	0

Extension With Liquid Government Bonds II

- We show that our model with liquid bonds has an equilibrium
 - in which the IOR rate is above the government-bond yield $(I_t^m > I_t^b)$,
 - in which banks hold only reserves for liquidity management $(b_t^b = 0)$,
 - which coincides with the equilibrium of our model without liquid bonds.
- So, our extended model
 - accounts for the negative spread between T-bill and IOR rates at the ZLB,
 - preserves the implications of our benchmark model for inflation at the ZLB.

Introduction	Model	Backward I	Backward II	Forward	Conclusion
000000	00	00000	0000	●000	0

Normalization of Monetary Policy

• In our model, current and expected future IOR-rate hikes and balance-sheet contractions are **always deflationary**:

$$\pi_{t} = -(1-\rho) \widehat{P}_{t-1} + \frac{(1-\delta_{m}\chi_{y})\kappa}{\beta\sigma\chi_{i}(\omega_{1}-1)(\omega_{2}-1)}\widehat{M}_{t-1} + \underbrace{\frac{\kappa}{\beta(\omega_{2}-\omega_{1})}}_{>0} \mathbb{E}_{t} \left\{ \sum_{k=0}^{+\infty} \underbrace{\left[\frac{-1}{\sigma}\left(\omega_{1}^{-k-1}-\omega_{2}^{-k-1}\right)\right]}_{<0} (i_{t+k}^{m}-r_{t+k}) - \underbrace{\frac{\kappa}{\beta(\omega_{2}-\omega_{1})}}_{<0} \right\}$$

$$+\sum_{k=0}^{+\infty} \underbrace{\left[\left(\frac{1-\delta_m \chi_y}{\sigma \chi_i} \right) \left(\frac{\omega_1^{-k}}{\omega_1 - 1} - \frac{\omega_2^{-k}}{\omega_2 - 1} \right) + \delta_m \left(\omega_1^{-k} - \omega_2^{-k} \right) \right]}_{>0} \widehat{\mu}_{t+k} \right\}}_{>0}$$

• So, in particular, our model implies no Neo-Fisherian effects.

Introduction	Model	Backward I	Backward II	Forward	Conclusion
0000000	00	00000	0000	000	0

Operational Framework: Local Analysis

- We consider in turn a corridor system and a floor system, both with a log-linearized rule of type i^m_t = ψπ_t with ψ ≥ 0.
- Under the **corridor system**, we have $i_t i_t^m = 0$, so the reserves-market-clearing condition becomes $\hat{m}_t = \chi_y \hat{y}_t$, the Phillips curve can be rewritten as

$$\pi_t = \beta \mathbb{E}_t \left\{ \pi_{t+1} \right\} + \kappa \underbrace{(1 - \delta_m \chi_y)}_{> 0} \widehat{y}_t,$$

and the model is isomorphic to the basic NK model. The implied rule for i_t is $i_t = \psi \pi_t$, and we need $\psi > 1$ to get local-equilibrium determinacy (**Taylor principle**).

• Under the **floor system**, we already know that $\psi = 0$ delivers local-equilibrium determinacy. We show that, more generally, any $\psi \ge 0$ ensures local-equilibrium determinacy (**no Taylor principle**).

Introduction	Model	Backward I	Backward II	Forward	Conclusion
000000	00	00000	0000	0000	0

Operational Framework: Global Analysis I

- However, the **floor system** may generate **global**-equilibrium indeterminacy when $0 \le \psi < 1$, at least under flexible prices.
- For ψ = 0, when I_t^m = I^m and μ_t = μ, we get (an infinity of) dynamic equilibria with Π_t < μ if and only if I^m > μ:
 - under scarce reserves ($I^m \leq \mu$), no such equilibrium exists, and $\Pi_t = \mu$,
 - under ample reserves ($I^m > \mu$), these equilibria exist, and $\Pi_t \le \mu$,
 - under very ample reserves $(I^m \to \mu/\beta)$, these equilibria exist, but $\Pi_t \to \mu$ in any of these equilibria at any date t (so that $I^m/\Pi_t \to 1/\beta)$.
- So, in order to stabilize inflation Π_t at a given target μ or close to it, the floor system should involve either scarce or very ample reserves when ψ = 0.

Introduction	Model	Backward I	Backward II	Forward	Conclusion
000000	00	00000	0000	0000	0

Operational Framework: Global Analysis II

• More generally, for $\psi \ge 0$, when $I_t^m = \max \left[I^m \left(\Pi_t / \mu \right)^{\psi}, 1 \right]$ and $\mu_t = \mu$, we get a unique equilibrium (and $\Pi_t = \mu$ in this equilibrium) if and only if

$$\begin{array}{cccc} \mu \geq \max(1, & \beta I^m, & \beta^{\psi} I^m). \\ \uparrow & \uparrow & \uparrow \\ \text{to avoid eq. with below-SS} & \text{to get} & \text{to avoid eq. with below-SS} \\ \text{inflation and binding ZLB} & \text{a SS eq.} & \text{inflation and non-binding ZLB} \end{array}$$

- So, for $0 \leq \psi < 1$,
 - $\Pi_t = \mu$ under scarce reserves $(I^m \le \mu / \beta^{\psi})$,
 - $\Pi_t \leq \mu$ under ample reserves ($I^m > \mu / \beta^{\psi}$),
 - $\Pi_t = \mu$ or $\Pi_t \to \mu$ under very ample reserves $(I^m \to \mu/\beta)$,

as previously with $\psi = 0$.

• So, again, the floor system should involve either scarce or very ample reserves.

Introduction	Model	Backward I	Backward II	Forward	Conclusion
0000000	00	00000	0000	0000	٠
C					
Summar	٠V				

- In this paper, we propose a model in which the central bank sets two instruments:
 - the interest rate on bank reserves,
 - the size of its balance sheet.
- Looking **backward**, we show that the model can qualitatively account for key observations about US **inflation** and **money-market rates** during the 2008-2015 ZLB episode.
- Looking forward, we explore the implications of our model for
 - the normalization of monetary policy,
 - its operational framework (floor vs. corridor system).

Robustness Check #1: Endogenous Nominal Reserves

- In our benchmark model, the stock of nominal reserves is exogenous.
- We endogenize it by considering the rule $M_t = P_t \mathcal{R}(P_t, y_t)$, with $\mathcal{R}_P < 0$ and $\mathcal{R}_y \leq 0$.
- The steady state is still unique, and we derive a simple sufficient **condition for local-equilibrium determinacy** under an exogenous IOR rate.
- We argue that this condition is met except for implausible calibrations.
- The shadow rule for *i*_t is still **Wicksellian**:

$$i_t = i_t^m + \frac{\chi_y}{\chi_i} \widehat{y}_t - \frac{1}{\chi_i} \widehat{m}_t = i_t^m + \frac{\chi_y}{\chi_i} \widehat{y}_t - \frac{1}{\chi_i} \left(-r_P \widehat{P}_t - r_y \widehat{y}_t \right).$$

reserves-market-clearing condition nominal-reserves rule

B. Diba, O. Loisel

Robustness Check #2: Household Cash

- In our benchmark model, the central bank controls **bank reserves**; but in reality, it controls the **monetary base** (bank reserves and cash).
- We introduce **household cash**, through a cash-in-advance (CIA) constraint, into our benchmark model.
- Again, the steady state is still unique, and we derive a simple sufficient condition for local-equilibrium determinacy under an exogenous IOR rate.
- Again, we argue that this condition is met except for implausible calibrations.
- Again, the shadow rule for i_t is still **Wicksellian**:

$$\dot{i}_{t} = \dot{i}_{t}^{m} + \frac{\chi_{y}}{\chi_{i}}\widehat{y}_{t} - \frac{1}{\chi_{i}}\widehat{m}_{t} = \dot{i}_{t}^{m} + \frac{\chi_{y}}{\chi_{i}}\widehat{y}_{t} - \frac{1}{\chi_{i}}\left[\frac{1}{1 - \alpha_{c}}\left(\widehat{M}_{t} - \widehat{P}_{t}\right) - \frac{\alpha_{c}}{1 - \alpha_{c}}\widehat{y}_{t}\right]$$

reserves-market-clearing condition

money-market-clearing condition and binding CIA constraint