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Abstract: In a broad class of discrete-time rational-expectations models, I consider
stabilization-policy rules making the policy instrument react with coe�cient φ ∈ R to
a (past, current, or expected future) variable at horizon h ∈ Z, possibly among other
variables, possibly with inertia. Using two complex-analysis theorems, I establish analyt-
ically some simple, easily interpretable, necessary or su�cient conditions on φ and h for
these rules to ensure local-equilibrium determinacy. These conditions lead to new, gen-
eral principles for stabilization policy in terms of whether, and how strongly or weakly, to
react to any variable, at any horizon, in any model, with any policy instrument. Build-
ing on these conditions, I characterize the scope of validity of (a generalized version of)
the long-run Taylor principle as a condition for determinacy. I apply all these results
to standard interest-rate rules in 134 quantitative monetary-policy models, and �nd the
new principles to be (either typically or occasionally) quantitatively relevant.
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1 Introduction

Dynamic rational-expectations models are widely used in macroeconomics. It is well

known that these models can have �sunspot equilibria� in which the economy �uctuates

around a steady state because of self-ful�lling expectations. Such �uctuations may no-

tably explain the relatively large macroeconomic volatility in the 1960s and 1970s in the

US, as argued by Clarida et al. (2000) and Lubik and Schorfheide (2004). Since these

�uctuations are typically detrimental to welfare, a natural goal for stabilization policy is
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to eliminate these equilibria by ensuring �local-equilibrium determinacy� (i.e. existence

and uniqueness of a stationary solution to the locally log-linearized model).

A large number of papers have thus studied, in various speci�c contexts, the conditions

under which a policy-instrument rule ensures determinacy; that is, in discrete time, the

inequality conditions on the coe�cients of the rule for the resulting dynamic system to

satisfy Blanchard and Kahn's (1980) determinacy conditions. Probably the best known

result along these lines is about the so-called �Taylor principle� for monetary policy. Since

Taylor (1993), monetary policy is commonly modeled by a simple interest-rate rule; in

its simplest version, the Taylor principle states that the rule should make the interest

rate react more than one-for-one to the in�ation rate (when it reacts only to the in�ation

rate). This principle has been found to be necessary and/or su�cient for determinacy in

some simple prominent models and for several alternative in�ation horizons in the rule

(see, e.g., Woodford, 2003, Chapter 4).

These determinacy conditions, however, have so far been studied − analytically or numer-

ically − only on a model-by-model, rule-by-rule basis; no general determinacy condition

has yet been established. Some tentative patterns emerge from this literature, but no

clear-cut result stands out; the Taylor principle, in particular, is a good guide for deter-

minacy in many monetary-policy models, but a poor one in others (see, e.g., Benhabib

et al., 2001, Bilbiie, 2008, and a dozen other references in Holden, 2024). For monetary

policy as for other stabilization policies, we still lack a general picture and a good un-

derstanding of determinacy outcomes depending on the coe�cients and time horizons of

the variables in the rule. We lack them essentially because the literature has been able

to derive analytical determinacy conditions only in simple models and for simple rules

with short horizons. The main di�culty in getting more general analytical results is that

Blanchard and Kahn's (1980) conditions are about the roots of the characteristic poly-

nomial of the dynamic system; and these roots depend on (the coe�cients and horizons

of) the policy-instrument rule in a complicated way.

In this paper, I use two complex-analysis theorems to overcome this di�culty and es-

tablish analytically some general, necessary or su�cient conditions for determinacy in

dynamic rational-expectations models. These conditions depend on the coe�cients and

horizons of the policy-instrument rule in a simple and easily interpretable way. They lead

to new principles for stabilization policy in terms of whether, and how strongly or weakly,

to react to any variable, at any horizon, in any model, with any policy instrument.

More speci�cally, I consider a broad class of (locally log-linearized) discrete-time in�nite-
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horizon rational-expectations models. For simplicity, I �rst focus on (locally log-linearized)

rules that make the policy instrument react to a single variable (or linear combination of

variables) with coe�cient φ ∈ R. The time horizon of this variable is h ∈ Z: the policy
instrument reacts to the |h|-period-lagged variable (when h ≤ −1), the current variable

(when h = 0), or the current expectation of the h-period-ahead variable (when h ≥ 1). A

negative horizon, making the rule backward-looking, may be due to �inside lags� (as are

called recognition, decision, and implementation lags, which delay the reaction of policy

to the state of the economy). A positive horizon, making the rule forward-looking, cap-

tures a reaction to forecasts or expectations (e.g., for monetary policy, the central bank's

in�ation forecasts, or market- or survey-based measures of in�ation expectations).

The determinacy status of the dynamic system composed of the model and the rule can be

either �determinacy� (unique stationary solution), or �multiplicity� (in�nity of stationary

solutions), or �explosiveness� (no stationary solution).1 I characterize this determinacy

status as a function of the coe�cient φ and the horizon h in the rule.

I show that there exists a positive threshold φ such that for any |φ| < φ, the determinacy

status is independent of h and is the same as under a policy-instrument peg (φ = 0).

Intuitively, for |φ| su�ciently small, the structural equations �dominate� the rule in the

system's dynamics: the rule does not change the system's dynamics enough, relatively to a

peg, to a�ect the determinacy status. There also exist a higher threshold φ̄ and a horizon

h∗ ∈ Z such that for any |φ| > φ̄, there is explosiveness if h ≤ h∗ − 1, determinacy

if h = h∗, and multiplicity if h ≥ h∗ + 1. Intuitively, for |φ| su�ciently large, it is

conversely the rule that dominates the structural equations in the system's dynamics: a

su�ciently large weight |φ| on outcomes before (resp. after) horizon h∗ favors exploding

(resp. imploding) paths and leads to explosiveness (resp. multiplicity).

For any |φ| ∈ (φ, φ̄), there is explosiveness (resp. multiplicity) if −h (resp. h) is suf-

�ciently large, re�ecting again the fact that a su�ciently large weight |φ| on outcomes

su�ciently distant in the past (resp. the future) favors exploding (resp. imploding) paths.

The set of horizons h ∈ Z such that determinacy obtains for at least one value of φ ∈ R
may be bounded or not, below or above; I establish necessary or su�cient conditions for

these outcomes to obtain. I also identify ranges of φ values, within (−φ̄,−φ)∪ (φ, φ̄), for

which there is no determinacy for any h ∈ Z.
1If the determinacy status is explosiveness, then any equilibrium path that starts close to the steady

state eventually leaves the neighborhood of the steady state within which the log-linear approximation
is valid − after which non-linearities kick in, and the path may for instance converge to a limit cycle, as
in Beaudry et al. (2017, 2020).

3



Building on these results, I study the validity of the Taylor principle as a condition for

determinacy. I consider Woodford's (2001, 2003) version of the Taylor principle, also

called the long-run Taylor principle, which has a broader scope than the simpler version

described above. I provide a formal, general de�nition of this principle, which applies to

any stabilization-policy model and any variable in the rule, and which comes down to an

inequality of type φ > φ1, where φ1 ∈ [φ, φ̄]. I characterize circumstances under which

this principle is (not) necessary, (not) su�cient, or (not) locally su�cient for determinacy

(where �locally,� in this context, means �for φ in a neighborhood of φ1�).

In particular, I show that the validity of the Taylor principle as a condition for deter-

minacy across di�erent horizons depends crucially on whether φ1 = φ̄, or φ1 ∈ (φ, φ̄),

or φ1 = φ. The Taylor principle can be necessary and locally su�cient for determinacy

in any of these three cases, but only for a single horizon in the �rst case (the horizon

h = h∗), for �nitely many horizons in the second case, and for in�nitely many horizons in

the third case (the horizons h < h1 or h > h1, where h1 ∈ R). The distinction between the

three cases sheds light on some intriguing results in the monetary-policy literature about

the �inverted Taylor principle� φ < φ1 being necessary and su�cient for determinacy

(Benhabib et al., 2001, and Bilbiie, 2008).

All these results still hold for rules involving several variables, one of which is a variable

with coe�cient φ and horizon h, provided that the coe�cients and horizons of the other

variables in the rule are taken as given.2 They also still hold for inertial rules, i.e. rules

that involve some past values of the policy instrument. I determine how rule inertia a�ects

the thresholds φ, φ̄, φ1, h
∗ and h1. In particular, I show that for an important subclass

of models and rules, increasing the inertia coe�cient ρ ∈ (0, 1) widens (unboundedly

as ρ → 1) the range of horizons for which the Taylor principle is necessary and locally

su�cient for determinacy.

I illustrate all these analytical results graphically with 5 small-scale monetary-policy mod-

els borrowed from the literature. To show that the results can be quantitatively relevant,

however, I also apply them to 134 medium- or large-scale monetary-policy models of

the Macroeconomic Model Data Base (MMB) described in Wieland et al. (2012, 2016).

For interest-rate rules reacting to in�ation only or to both in�ation and output, with or

without inertia, I �nd that the threshold values φ, φ1, h
∗ and h1 are typically of the same

order of magnitude as standard values of φ and h in the literature, while φ̄ can be of

2The results then hold in exactly the same terms as above, except that �under a peg� should be
replaced by �for φ = 0.�
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the same order of magnitude but is typically one or several orders of magnitude larger. I

discuss the implications of these quantitative results in the main text.

A few remarks may serve to put my contribution in the context of the literature. The

paper is, to my knowledge, the �rst to establish general determinacy conditions about the

coe�cients and horizons of policy-instrument rules, which hold regardless of the dimen-

sion of the dynamic system. In particular, the concepts of φ, φ̄, h∗ and h1 (which underpin

these determinacy conditions) are new. The literature has derived determinacy condi-

tions analytically only in simple models and for simple rules with short horizons (so that

the dimension of the dynamic system, i.e. the degree of the characteristic polynomial, is

typically not higher than three).3 Early examples of such contributions include Benhabib

et al. (2001), Bullard and Mitra (2002), Carlstrom and Fuerst (2002) and Woodford

(2003, Chapter 4).4 Recent examples include Acharya and Dogra (2020), Bilbiie (2024)

and Gabaix (2020).

The two complex-analysis theorems that I use to establish my general results are those

of Rouché (1862) and Erd®s and Turán (1950). One of these theorems is not new to

economics: Bhattarai et al. (2014) use (another version of) Rouché's theorem to de-

rive a su�cient condition for determinacy in a monetary-policy model with partial price

indexation and habit formation in consumption. There are, in substance, three key dif-

ferences between their su�cient condition for determinacy and my su�cient conditions

for determinacy, or multiplicity, or explosiveness.

The �rst di�erence is that Bhattarai et al. (2014) are after the weakest possible su�cient

condition for determinacy in the context of their model and their rule; to that aim,

they use a stronger version of Rouché's theorem, established by Glicksberg (1976); the

analytical condition that they get depends on each coe�cient of the rule in a complicated

and opaque way (even though this condition is numerically found to be only slightly

stronger than the simple long-run Taylor principle). By contrast, I am after some simple

and easily interpretable su�cient conditions; I get them using the standard version of

Rouché's theorem, and applying it di�erently; these analytical conditions depend on

the coe�cient φ of the policy-instrument rule in a simple and transparent way, through

the thresholds φ, φ̄ and φ1. The other side of the coin, however, is that my su�cient

conditions are not the weakest possible, and they are about one coe�cient at a time

3Exceptionally, the dimension of the dynamic system can go up to four (Ascari et al., 2017) or even
�ve (Bhattarai et al., 2014).

4Benhabib et al. (2001) conduct most of their analysis in continuous time; so, their concepts of
backward- and forward-looking rules di�er from mine (in particular, their backward-looking rules amount
to inertial rules, as Benhabib et al., 2003, note).
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(taking the other coe�cients as given, if the rule has several coe�cients).

The second di�erence is that my conditions characterize the determinacy status for all

horizons h ∈ Z, while Bhattarai et al. (2014) focus on a few speci�c short horizons

(namely 0 and 1), like the rest of the literature. The third di�erence, �nally, is that I

establish my su�cient conditions for a generic rule in a generic model, in order to derive

general principles for stabilization policy, while Bhattarai et al. (2014) establish theirs

for a speci�c interest-rate rule in a speci�c monetary-policy model.

Some of the results I establish are conditional on whether the model delivers multiplic-

ity, determinacy, or explosiveness under a policy-instrument peg. One comes across the

three types of models in the monetary-policy literature. Standard New Keynesian models

typically deliver multiplicity under an interest-rate peg; this property is emphasized by

Cochrane (2011); Giannoni and Woodford (2002) and Woodford (2003, Chapter 8) call

it the �Sargent-Wallace property,� after Sargent and Wallace (1975). Older models often

deliver explosiveness under an interest-rate peg; this property is emphasized by Cochrane

(2011), who calls these models �Old Keynesian.� More recently, models have been devel-

oped that can deliver determinacy under an interest-rate peg (and, as a result, can solve

some New Keynesian puzzles and paradoxes at the zero lower bound). Examples include

the heterogenous-agents models of Acharya and Dogra (2020) and Bilbiie (2008, 2024),

and the bounded-rationality model of Gabaix (2020).

My results about positive horizons o�er an explanation for the propensity of forward-

looking interest-rate rules to generate multiplicity in New Keynesian models, as found

in, e.g., Levin et al. (2003). Existing results on this front are mostly numerical and

sparsely distributed across calibrated or estimated models and rules; my analytical results

generalize them to a broad class of models and a broad class of rules (making the policy

instrument react to any expected future variable).

My results about negative horizons matter in the presence of inside lags. Benhabib

(2004) analyzes the implications of inside lags for determinacy in a simple monetary-

policy model (analytically in continuous time, numerically in discrete time). In Loisel

(2024), I investigate the ability of stabilization policy to ensure determinacy and to

control the anticipation and convergence rates in the presence of inside or outside lags;

the approach I take there (starting from a targeted characteristic polynomial and deriving

a corresponding, arbitrarily complex policy-instrument rule) is radically di�erent from

the one I am taking here, and does not lead to any simple principle for stabilization

policy.
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As I discuss in the main text, the application of my general results to MMB models

provides guidelines for �nding a robust interest-rate rule, in the sense of an interest-rate

rule delivering determinacy across a wide range of alternative monetary-policy models.

Levin et al. (1999, 2003), Levin and Williams (2003), and Taylor and Williams (2011),

among others, look for interest-rate rules that are robust in a broader sense (which

goes beyond determinacy issues). Unlike them, I use the numerical values of analytical

coe�cient and horizon thresholds (rather than numerical simulations over a grid of rule-

coe�cient values): this approach provides more structured insights and facilitates the

comparison across many models.5 Relatedly, my general results shed light on the poor

performance of superinertial rules in Old Keynesian models (Rudebusch and Svensson,

1999; Levin and Williams, 2003), and on the degree of superinertia of �robustly optimal

rules� (Giannoni and Woodford, 2002, 2003, 2005; Woodford, 2003, Chapter 8).

Most of the literature on policy-instrument rules is about monetary policy. My results

apply more generally to any stabilization policy. In particular, �scal policy can also raise

various indeterminacy issues, as is well known since Leeper (1991) and Schmitt-Grohé and

Uribe (1997). Finally, I establish not only determinacy conditions, but also multiplicity

conditions and explosiveness conditions. Clarida et al. (2000) and Lubik and Schorfheide

(2004) have famously argued that US macroeconomic volatility before 1979 may be due

to multiplicity. Beaudry et al. (2017, 2020) argue that recent US macroeconomic data

are consistent with explosiveness (and convergence to a limit cycle).

The rest of the paper is organized as follows. Section 2 illustrates some of the main results

of the paper in the basic New Keynesian model, with a rule making the interest rate react

to in�ation. Section 3 generalizes the analysis to a broad class of models and a broad

class of rules. Section 4 applies these general results to standard interest-rate rules in 134

quantitative monetary-policy models. I then conclude and provide a technical appendix.

2 A basic New Keynesian illustration

In this section, I illustrate some of the main results of the paper in a simple and well known

monetary-policy context: the basic New Keynesian (NK) model, with a rule making the

interest rate react to in�ation. The analysis is a speci�c case, in terms of model and rule,

of the more general analysis conducted in the next section.

5Using a di�erent strategy (less directly related to my paper), Holden (2024) proposes a robust
interest-rate rule that pins down in�ation uniquely and controls its value in any model with a Fisher
equation (arising from the mere existence of a real-bond market).
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2.1 Model and rule

I refer the reader to Woodford (2003) and Galí (2015) for a detailed presentation of the

basic NK model. In this model, at each date t ∈ Z, the private sector sets in�ation πt

and output yt according to the following (locally log-linearized) IS equation and Phillips

curve:

yt = Et{yt+1} −
1

σ
(it − Et{πt+1}) , (1)

πt = βEt{πt+1}+ κyt, (2)

where Et{.} denotes the date-t rational-expectations operator, and σ > 0, β ∈ (0, 1) and

κ > 0 are three parameters. I abstract from exogenous shocks in the structural equations

(1) and (2), as they are irrelevant for determinacy issues. The policymaker is a central

bank setting the short-term nominal interest rate it. I assume for now that the central

bank reacts only to the past, current, or expected future in�ation rate; i.e., I consider

the following (locally log-linearized) interest-rate rule:

it = φEt {πt+h} , (Rule 1)

where (φ, h) ∈ R× Z (with Et {πt+h} = πt+h when h ≤ 0). I call φ and h the coe�cient

and horizon of in�ation in the rule − or, with slight abuse of language, the coe�cient

and horizon of the rule.

Using the Phillips curve (2) and Rule 1 to replace yt, yt+1, and it in the IS equation (1),

I get the dynamic equation

Et {Q(L)πt+2}+ φEt {πt+h} = 0, (3)

where Q(z) := (σ/κ)[β − (1 + β + κ/σ)z + z2] ∈ R[z] and L is the lag operator.6 Let ν

denote the number of non-predetermined variables of this dynamic equation.7 Let P (z)

denote the reciprocal polynomial of this dynamic equation's characteristic polynomial.8

Under an interest-rate peg (φ = 0), we have ν = 2 and P (z) = Q(z). When the interest

rate is not pegged (φ 6= 0), we generically have ν = max(2, h),9 and

P (z) = Q(z)zmax(0,h−2) + φzmax(0,2−h). (4)

6Throughout the paper, R[z] denotes the set of polynomials in z with real-number coe�cients.
7Throughout the paper, the non-predetermined variables of a dynamic system are de�ned, following

Blanchard and Kahn (1980), as the non-predetermined elements of the vector Zt when the dynamic
system is written in a �rst-order form of type Et {Zt+1} = MZt, where M is a square matrix.

8For any P̃ (z) ∈ R[z] of degree d, the reciprocal polynomial of P̃ (z) is zdP̃ (z−1). I work with the
reciprocal polynomial of the characteristic polynomial, rather than with the characteristic polynomial
itself, as the former is more convenient to use than the latter in conjunction with the lag operator.

9This result is �generic� in the sense of holding for all (φ, h) ∈ (R \ {0})×Z except (φ, h) = (−βσ/κ, 2).
If (φ, h) = (−βσ/κ, 2), then the coe�cient of Et {πt+2} in the dynamic equation is 0, and we get ν = 1
instead of ν = 2. I study such zero-measure cases in Loisel (2009); I ignore them in the present paper.
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Finally, let C denote the circle of radius 1 centered at the origin of the complex plane,

and p the number of roots of P (z) inside C (counting multiplicity). As follows from

Blanchard and Kahn (1980), the dynamic equation has an in�nity of stationary solutions

if p ≤ ν−1, a unique stationary solution if p = ν, and no stationary solution if p ≥ ν+1.

I say that the �determinacy status� S(φ, h) of the system composed of the structural

equations (1)-(2) and Rule 1 is equal to M (for �multiplicity�) in the �rst case, D (for

�determinacy�) in the second case, and E (for �explosiveness�) in the third case.

2.2 Determinacy status, independently of sgn(φ)

I now determine the determinacy status S(φ, h) for |φ| su�ciently small or large and any

h, as well as for |h| su�ciently large and any φ. I �nd that for these values of φ and

h, the determinacy status does not depend on the sign of φ, i.e. S(φ, h) = S(−φ, h).

I will state the results below, in Proposition 1. Before stating the results, however, I

represent them diagrammatically in Figure 1, in order to guide the reading and facilitate

the understanding of Proposition 1. Figure 1 shows the determinacy status S(φ, h) in

the pseudo half-plane (h, |φ|) ∈ Z× R+, according to Proposition 1.

Figure 1: Determinacy status for the basic NK model and Rule 1,
independently of sgn(φ)

b Determinacy (D)

b Multiplicity (M)

b Explosiveness (E)

Not characterized in Proposi-
tion 1, may depend on sgn(φ)

Proposition 1, which may look a bit hermetic at �rst sight, is actually nothing else than

a mathematical formulation of Figure 1:10

10In this proposition and in the rest of the paper, I use the shortcut �∀ |φ| ...� for �∀φ ∈ R such that
|φ| ...�.
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Proposition 1 (Determinacy status, independently of sgn(φ), in the basic NK

illustration): Consider the basic NK model (1)-(2) and Rule 1. Let φ := minz∈C |Q(z)| =
1 and φ̄ := maxz∈C |Q(z)| = 1 + 2(1 + β)σ/κ. Then, as represented diagrammatically in

Figure 1:

(a) ∀ |φ| < φ, ∀h ∈ Z, S(φ, h) = M ;

(b) ∀ |φ| > φ̄, (i) ∀h ≤ −1, S(φ, h) = E, (ii) S(φ, 0) = D, (iii) ∀h ≥ 1, S(φ, h) = M ;

(c) ∃h̄ ∈ Z, ∀ |φ| ∈ (φ, φ̄), ∀h ≥ h̄, S(φ, h) = M ;

(d) ∃h : (φ, φ̄) → Z, (i) ∀ |φ| ∈ (φ, φ̄), ∀h ≤ h (|φ|), S(φ, h) = E, (ii) ∀ε ∈ (0, φ̄ − φ), h

is bounded on (φ+ ε, φ̄).

Proof : See the Appendix. The proof uses two complex-analysis theorems, those of

Rouché (1862) and Erd®s and Turán (1950). �

Points (a)-(b) of Proposition 1 are about the determinacy status S(φ, h) for a su�ciently

small or large |φ| (bottom and top horizontal bands of Figure 1). To get the intuition for

these two points, note that the polynomial P (z) in (4), which characterizes the system's

dynamics, is the sum of two terms: the term Q(z)zmax(0,h−2), coming from the structural

equations and independent of φ, and the term φzmax(0,2−h), coming from the rule and

proportional to φ.

For |φ| < φ := minz∈C |Q(z)| (Point (a) of Proposition 1 and bottom horizontal band

of Figure 1), the former term is larger in modulus than the latter term on the entire

circle C: ∀z ∈ C,
∣∣Q(z)zmax(0,h−2)

∣∣ > ∣∣φzmax(0,2−h)
∣∣. In this sense, the structural equations

dominate the rule in the system's dynamics. As a result, the rule does not change the

system's dynamics enough, relatively to an interest-rate peg, to a�ect the determinacy

status; and this status remains the same as under an interest-rate peg − i.e., multiplicity.

Conversely, for |φ| > φ̄ := maxz∈C |Q(z)| (Point (b) of Proposition 1 and top horizontal

band of Figure 1), it is the rule that dominates the structural equations in the system's

dynamics: ∀z ∈ C,
∣∣φzmax(0,2−h)

∣∣ > ∣∣Q(z)zmax(0,h−2)
∣∣. As a result, the determinacy status

depends only on the horizon h in the rule. A large weight |φ| on past in�ation (h ≤ −1)

favors exploding paths and leads to explosiveness; a large weight |φ| on expected future

in�ation (h ≥ 1) favors imploding paths and leads to multiplicity; and a large weight |φ|
on current in�ation (h = 0) strikes the right balance between exploding and imploding

paths, and leads to determinacy.

Point (c) of Proposition 1 is about the determinacy status for |φ| ∈ (φ, φ̄) and h su�ciently

large (right-hand side of the central horizontal band in Figure 1). To get the intuition for
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this point, let zo denote the root of Q(z) in (1,+∞), with the subscript �o� standing for

�outside C.�11 Under an interest-rate peg (φ = 0), we have a multiplicity of equilibrium

paths that converge over time to zero at rate z−1o . When the interest rate is not pegged

(φ 6= 0), these paths are no longer equilibrium paths: they do not satisfy the dynamic

equation (3) because of the (now non-zero) term φEt{πt+h} in this equation. When

h is large, however, they are �close to satisfying� the dynamic equation, as the term

φEt{πt+h} is, on these paths, proportional to z−ho and hence close to zero. As a result, by

continuity, there are neighboring paths that do satisfy the dynamic equation; i.e., there

are equilibrium paths that converge over time to zero at a rate close to z−1o .12 So, the

determinacy status is multiplicity for h su�ciently large.

Point (d) of Proposition 1 is about the determinacy status for |φ| ∈ (φ, φ̄) and −h
su�ciently large (left-hand side of the central horizontal band in Figure 1). For |φ| ∈
(φ, φ̄), the structural equations do not dominate the rule on the entire circle C (since

|φ| > φ), nor does the rule dominate the structural equations on the entire circle C (since
|φ| < φ̄). As h → −∞, the roots of P (z) distribute themselves between outside and

inside C in proportion of the share of C on which the structural equations dominate the

rule and the share of C on which the rule dominates the structural equations; so, the

number of roots of P (z) inside C grows unboundedly (p→ +∞) and eventually exceeds

the constant number of non-predetermined variables (ν = 2), leading to explosiveness.

Determinacy may still obtain for arbitrarily large −h's, but only if |φ| is arbitrarily close

to φ, i.e. only if the portion of C on which the rule dominates the structural equations is

arbitrarily small.

In both Points (b) and (d), thus, a su�ciently large weight |φ| on su�ciently ancient

in�ation rates favors exploding paths and leads to explosiveness (left-hand side of the top

and central horizontal bands in Figure 1). The two points suggest some substitutability

between �su�ciently large weight� and �su�ciently ancient in�ation rates.� In Point

(b), the weight |φ| is higher than φ̄ (i.e. the rule dominates the structural equations

on the entire circle C), and even the most recent in�ation rates are enough to generate

explosiveness. In Point (d), conversely, for very ancient in�ation rates, even a weight |φ|
hardly higher than φ (i.e. even a very small portion of C on which the rule dominates

the structural equations) is enough to generate explosiveness.

11Since Q(0) = βσ/κ > 0, Q(1) = −1 < 0, and limz∈R,z→+∞Q(z) = +∞, Q(z) has one root in (0, 1)
and another in (1,+∞).

12As h→ +∞, these equilibrium paths uniformly converge to those under an interest-rate peg, as the
rate at which they converge over time to zero converges to z−1o . In this sense, arbitrarily large horizons
in the rule preserve all the local equilibria existing under an interest-rate peg.
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2.3 Determinacy status, depending on sgn(φ)

Proposition 1 and the associated Figure 1 focus on regions of the pseudo plane (h, φ) ∈
Z×R in which the determinacy status does not depend on the sign of φ. In the remaining,

hatched, central region of Figure 1, however, the determinacy status may − and does −
depend on the sign of φ. It is well known, since Bullard and Mitra (2002) and Woodford

(2003, Chapter 4), that S(φ, h) = D for 1 < φ < 1 + 2(1 + β)σ/κ (i.e. φ < φ < φ̄) and

h ∈ {−1, 0, 1}. So, for φ > 0, the hatched region of Figure 1 includes a determinacy zone.

By contrast, for φ < 0, the hatched region does not include any determinacy zone, as the

following proposition shows:

Proposition 2 (Determinacy status for φ ∈ (−φ̄,−φ) in the basic NK illustra-

tion): Consider the basic NK model (1)-(2) and Rule 1. Then ∀φ ∈ (−φ̄,−φ), ∀h ∈ Z,
S(φ, h) 6= D.

Proof : See Online Appendix A.1.13 �

Recall that determinacy obtains if and only if p = ν (where, as a reminder, p denotes

the number of roots of P (z) inside C, and ν the number of non-predetermined variables).

The proof of Proposition 2 simply shows that p − ν is odd, and hence non-zero, for all

(φ, h) ∈ (−φ̄,−φ) × Z. So, as (φ, h) moves within this set, the only possible changes

in the determinacy status S(φ, h) are direct jumps from multiplicity to explosiveness or

vice-versa.

Proposition 2 might be considered of limited practical relevance, as empirical estimates of

φ are, of course, typically positive in the literature. The proposition is nonetheless useful

to emphasize that the determinacy status depends on the sign of φ in the hatched region

of Figure 1. It also prepares the ground for more general results in Section 3, which are

of a similar nature but may apply to positive values of φ.

2.4 Numerical example

In order to illustrate Propositions 1-2 and the next propositions numerically and graph-

ically, I consider Woodford's (2003, Chapter 4) calibration of the basic NK model:

13Unlike the proof of Proposition 1, which is in the Appendix of the paper, the proofs of Propositions
2-8 are relegated to an Online Appendix. The reason is that these proofs do not bring any substantial
new insight, compared to their brief discussion in the main text and/or to the proof of Proposition 1.
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(β, κ, σ) = (0.99, 0.022, 0.16), the period being one quarter.14 I call �Model 1� the re-

sulting calibrated model, as it is the �rst of several calibrated models that I will consider

in the paper.

The results obtained for Model 1 and Rule 1 are presented in Figure 2. This �gure shows

the determinacy status S(φ, h) in the pseudo plane (h, φ) ∈ Z × R with a log scale for

φ.15 The horizon value bh1c featuring in Figure 2a will be introduced and commented

upon in the next subsection.

Figure 2: Determinacy status for Model 1 and Rule 1

b D

b M

b E

Figure 2 provides a numerical illustration of the diagrammatic Figure 1 (which summa-

rizes Proposition 1). The di�erence between Figures 2a and 2b makes clear that the

determinacy status in the hatched, central region of Figure 1 depends on the sign of φ;

in particular, Figure 2b illustrates Proposition 2.

Even though the basic NK model is clearly not quantitative, two numerical features of

Figure 2 are worth emphasizing. First, the upper coe�cient threshold φ̄ is one order of

magnitude larger than standard values of φ in the literature (which are often between 1

and 2). Second, the horizon threshold at and above which the rule can no longer deliver

determinacy (i.e., the lowest integer h̄ in Point (c) of Proposition 1) is only two quarters;

so, in this numerical example, a forward-looking monetary policy can ensure determinacy

only if it is hardly forward-looking.

14Galí's (2015, Chapter 3) calibration, (β, κ, σ) = (0.99, 0.125, 1), leads to qualitatively and quantita-
tively similar results.

15Throughout the paper, I normalize the dimensions of numerical-�gure panels as follows: (i) each
panel is square; (ii) in each panel, the horizontal band corresponding to φ ∈ (φ, φ̄) or φ ∈ (−φ̄,−φ) is
vertically centered and has a 16:9 widescreen aspect ratio. I do not report the implied lowest and largest
φ values in the panel, as they are uninformative.
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2.5 Taylor principle

I now examine the validity of the Taylor principle as a condition for determinacy. By

�Taylor principle�, throughout the paper, I mean the long-run Taylor principle, �rst

proposed by Woodford (2001, 2003) and widely used thereafter (e.g. in Galí, 2015,

Chapter 4). I will provide a formal, general de�nition of the long-run Taylor principle in

Section 3. In the current section, I only need to state this principle in the speci�c context

of the basic NK model. In this context, loosely speaking, the long-run Taylor principle

states that if the in�ation rate were permanently higher by one percentage point, then

the system composed of the Phillips curve (2) and the rule considered should make the

interest rate permanently higher by more than one percentage point. Under Rule 1, this

principle straightforwardly translates into the familiar inequality φ > 1.

Proposition 1 and the associated Figure 1 have two straightforward implications for the

Taylor principle in the basic NK model under Rule 1. First, for φ ≥ 0, the Taylor principle

φ > 1 is necessary for determinacy for all h ∈ Z. Second, for all h ∈ Z \ {0}, the Taylor
principle is not su�cient for determinacy. The following proposition states a third result

about the Taylor principle, which does not directly follow from Proposition 1. This result

is, in part, about the Taylor principle being �locally su�cient� for determinacy, in the

sense of φ just above 1 delivering determinacy (i.e. ∃ε > 0, ∀φ ∈ (1, 1 + ε), S(φ, h) = D).

Proposition 3 (Taylor principle in the basic NK illustration): Consider the basic

NK model (1)-(2) and Rule 1 with φ ≥ 0. Let h1 := 2 − Q′(1)/Q(1) = 1 + (1 − β)σ/κ.

Then the Taylor principle φ > 1 is necessary and locally su�cient for determinacy if and

only if h < h1.

Proof : See Online Appendix A.2. �

Proposition 3 can be understood and interpreted as follows. For any φ ∈ (0, 1) and any

h ∈ Z, the degree of indeterminacy is one: P (z) lacks one root inside the unit circle C to
deliver determinacy (just like under a peg). As φ goes from below 1 to above 1, one root

of P (z) crosses the unit circle C (at point 1). When h < h1, the root goes from outside to

inside C, so the determinacy status changes from multiplicity to determinacy (re�ecting

the fact that increasing the weight on in�ation rates su�ciently distant in the past favors

exploding paths). Alternatively, when h > h1, the root goes from inside to outside C, so
the determinacy status remains multiplicity (re�ecting the fact that increasing the weight

14



on in�ation rates su�ciently distant in the future favors imploding paths).16

Proposition 3 is illustrated numerically in Figure 2a, where bh1c = 1. More generally, for

standard calibrations of the basic NK model, the horizon threshold h1 = 1 + (1− β)σ/κ

is typically between 1 and 2, as β is typically set to 0.99 (on a quarterly basis). For

Woodford's (2003, Chapter 4) and Galí's (2015, Chapter 3) calibrations, for instance, h1

takes the values 1.07 and 1.08, which are much closer to 1 than to 2. So, in the basic NK

model under Rule 1, the Taylor principle is typically not a valid determinacy condition

for horizons of two or more quarters.

Conversely, the Taylor principle is always a valid determinacy condition for negative

horizons (in the basic NK model under Rule 1), as illustrated again in Figure 2a. As

a consequence, a central bank reacting to in�ation can be arbitrarily backward-looking

and still ensure determinacy − provided that φ is above and arbitrarily close to 1.

2.6 Rule inertia

The interest-rate rules considered in the literature are often inertial: they set the interest

rate conditionally on its past value(s). I now introduce some inertia into Rule 1 in the

following way:

it = ρit−1 + (1− ρ)φEt {πt+h} , (Rule 2)

where ρ ∈ (0, 1) and (φ, h) ∈ R×Z. Following standard practice in the literature, I have

multiplied the coe�cient φ by the scale factor 1− ρ in this rule, in order to �normalize�

the long-run Taylor principle to φ > 1. The next proposition describes how this inertia

a�ects the determinacy status and the validity of the Taylor principle as a condition for

determinacy:

Proposition 4 (Rule inertia in the basic NK illustration): Propositions 1-3 still

hold for Rule 2 instead of Rule 1, if Q(z) is replaced by Q(z)(1 − ρz)/(1 − ρ) in these

propositions. This replacement leaves φ unchanged, multiplies φ̄ by (1 + ρ)/(1− ρ), and

adds ρ/(1− ρ) to h1.

Proof : see Online Appendix A.3. �

Replacing the non-inertial Rule 1 with the inertial Rule 2 thus amounts to replacing Q(z)

with Q(z)(1−ρz)/(1−ρ) in the expression (4) of P (z); I will explain why below. In turn,

16In a (longer) working-paper version of this paper (Loisel, 2022), I also show that ∀h > h1, ∀φ ∈ R,
S(φ, h) = M : so, dh1e is the smallest integer h̄ in Point (c) of Proposition 1.
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the replacement of Q(z) by Q(z)(1−ρz)/(1−ρ) a�ects the previous results quantitatively

(notably by increasing φ̄ and h1, and increasing them unboundedly as ρ → 1), but not

qualitatively : the general form of Figure 1 remains the same (Proposition 1), we still have

indeterminacy for all (φ, h) ∈ (−φ̄,−φ) × Z (Proposition 2), and the Taylor principle is

still necessary and locally su�cient for determinacy if and only if the horizon h is below

a certain threshold h1 (Proposition 3).17

Proposition 4 is illustrated numerically in Figure 3. This �gure shows the determinacy

status for Model 1 and Rule 2 with ρ = 0.8 and φ > 0. For this value of ρ (which is

a standard value in the literature, when the period is one quarter), as we move from

Rule 1 to Rule 2, φ̄ increases ninefold (as (1 + ρ)/(1 − ρ) = 9), from 30 to 270, and h1

increases by 4 quarters (as ρ/(1 − ρ) = 4), from 1 to 5 quarters. More generally, the

whole determinacy region extends both upwards and rightwards as we move from Rule 1

to Rule 2, as apparent in Figure 3 (where, for comparison purposes, I have also shown the

boundaries of the determinacy region under Rule 1). It extends upwards because inertia

makes it harder for the rule to dominate the structural equations on any portion of C
(since |(1− ρz)/(1− ρ)| ≥ 1 for any z ∈ C). And it extends rightwards because inertia,

by increasing the weight on past outcomes, tends to favor exploding paths and, as a result,

changes the determinacy status from multiplicity to determinacy on the immediate right

of the determinacy region obtained under Rule 1 (thus increasing h1).

I have so far commented upon and interpreted the second part of Proposition 4, but not

its �rst part yet. Why does replacing Rule 1 with Rule 2 amount, in the �rst place, to

replacing Q(z) with Q(z)(1− ρz)/(1− ρ) in the expression (4) of P (z)? Recall that Q(z)

is the reciprocal polynomial of the characteristic polynomial under a peg. Why does

introducing inertia into the rule amount to changing the dynamics under a peg? The

reason is that introducing some inertia into the reaction of the interest rate to the state

of the economy (i.e. replacing it with (1− ρL)it/(1− ρ) in the rule), leaving unchanged

the reaction of the economy to the interest rate (i.e. leaving the structural equations

unchanged), is equivalent, as far as the determinacy status is concerned, to introducing

17Of course, if we replace Rule 1 not with Rule 2, but instead with the rule it = ρit−1 + φEt{πt+h}
(which is Rule 2 without the scale factor 1−ρ), then Propositions 1-3 still hold with this time φmultiplied

by 1 − ρ, φ̄ multiplied by 1 + ρ, the Taylor principle changed to φ > 1 − ρ, and h1 still increased by
ρ/(1 − ρ). As ρ → 1, this rule converges to the ��rst-di�erence rule� it = it−1 + φEt{πt+h}, which has
the same implications for the determinacy status as the �Wicksellian rule� it = φEt{pt+h} (where pt
denotes the price level). So, by continuity, the determinacy status under this rule converges, as ρ → 1,
to the determinacy status under the Wicksellian rule, which I characterize in a (longer) working-paper
version of this paper (Loisel, 2022). In particular, at the limit, the Taylor principle is φ > 0 and h1 is
in�nite; so, under the Wicksellian rule, for any horizon h ∈ Z, a su�ciently small positive coe�cient φ
ensures determinacy.
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Figure 3: Determinacy status for Model 1 and Rule 2 with ρ = 0.8 and φ > 0

b Determinacy (D)

b Multiplicity (M)

b Explosiveness (E)

Boundaries of D region under Rule 1

the same inertia into the reaction of the economy to the interest rate (i.e. replacing xt

with (1 − ρL)xt/(1 − ρ) for all xt ∈ {yt, πt, yt+1, πt+1} in the structural equations, and

hence replacing Q(z) with Q(z)(1− ρz)/(1− ρ)), leaving unchanged the reaction of the

interest rate to the state of the economy (i.e. leaving the rule unchanged).

2.7 Discussion

In this section, I have studied the determinacy status in the basic NK model under Rules

1 and 2, as a function of the coe�cient φ and the horizon h of in�ation in the rule. In

the next section, I will study the determinacy status for a broad class of models and a

broad class of rules, as a function of the coe�cient and horizon of one variable in the

rule, taking as given the coe�cients and horizons of the other variables in the rule (if

any). For instance, for interest-rate rules of type

it = ρit−1 + (1− ρ)
(
φπEt {πt+hπ}+ φyEt

{
yt+hy

})
,

where ρ ∈ [0, 1), (φπ, φy) ∈ R2 and (hπ, hy) ∈ Z2, the results will characterize the

determinacy status as a function of (φπ, hπ) for a given (φy, hy), or as a function of (φy, hy)

for a given (φπ, hπ), but not as a function of (φπ, φy, hπ, hy).
18 Thus, the new principles

for stabilization policy that I establish in this paper do not require the policymaker to

react to only one variable (as the analysis above, based on Rules 1 and 2, might suggest);

rather, they are about how much and at what horizon the policymaker should react to

one variable, taking as given how much and at what horizon the policymaker reacts to

other variables.
18Studying the determinacy status as a function of (φπ, φy, hπ, hy) would lead to intricate and model-

speci�c results, whereas I am after simple and general results.
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What qualitative principles for monetary policy have we learned from this basic NK

illustration? To achieve determinacy, the interest rate should not react too weakly to

in�ation, nor too strongly (except at the horizon 0). It should not react to in�ation too

far away in the future, nor too far away in the past (except with a coe�cient just above 1).

It should essentially not react negatively to in�ation. And the Taylor principle is a locally

good guide for determinacy, but only up to a certain positive horizon threshold, which

increases unboundedly with the inertia coe�cient. How general are all these principles?

Do they extend to other models, other rules, other policy instruments? I address these

questions in the next section.

3 General analysis

In this section, I generalize the results of the previous section to a broad class of dynamic

rational-expectations models, and to rules making the policy instrument react to any

variable (or linear combination of variables) at horizon h with coe�cient φ, possibly

among other variables, possibly with inertia.

3.1 Models and rules

At each date t ∈ Z, the private sector sets an n-dimension vector of endogenous variables

Xt according to the following (locally log-linearized) structural equations:

Et
{
∆
(
L−1

) [
A (L) Xt + L−γB (L) it

]}
= 0, (5)

where again it denotes the policy instrument at date t, L the lag operator, and Et{.} the
date-t rational-expectations operator. I abstract again from exogenous shocks, as they

are irrelevant for determinacy issues. These structural equations are parameterized by

n ∈ N \ {0}, γ ∈ N, A(z) ∈ Rn×n[z], B(z) ∈ Rn×1[z] \ {0}, ∆(z) = diag
(
zδ1 , ..., zδn

)
∈

Rn×n[z], and (δ1, ..., δn) ∈ Nn.19 I assume that det[A(0)] 6= 0; this assumption is made

without any loss in generality because any system of independent structural equations of

type (5) that does not satisfy this assumption can be equivalently rewritten as a system

of type (5) that does.

The policymaker sets the policy instrument it according to a rule. I assume for now that

19Throughout the paper, letters in bold denote vectors and matrices that have potentially more than
one element. 0 denotes a vector or a matrix whose elements are all equal to zero and whose dimensions
depend on the speci�c context in which it is used. For any (n1, n2) ∈ (N \ {0})2, Rn1×n2 [z] denotes the
set of polynomials in z whose coe�cients are n1 × n2 matrices with real-number elements.
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the rule is not inertial and involves a single variable (I will relax these assumptions later

in the section). So, for now, the policymaker follows the (log-linearized) rule

it = φEt {vt+h} , (6)

where φ ∈ R and h ∈ Z (with again Et {vt+h} = vt+h when h ≤ 0), and where vt can be

any linear combination of current and past endogenous variables:

vt := V(L)Xt (7)

with V(z) ∈ R1×n[z]. I make the following non-restrictive assumption on V(z):

W (z) := det

[
A(z) B(z)
V(z) 0

]
6= 0.

If this assumption were not satis�ed, then vt could be expressed as a linear combina-

tion of (a backward-looking version of) the structural equations, and would therefore be

exogenous.20

3.2 Preliminaries

As in Section 2, let ν denote the number of non-predetermined variables of the system (5)-

(6), and P (z) the reciprocal polynomial of the characteristic polynomial of this system.

In addition, let ω ∈ N denote the multiplicity of 0 as a root of W (z) (with ω = 0 if

W (0) 6= 0), and let δ :=
∑n

j=1 δj, m := ω−γ, Q(z) := det[A(z)] and R(z) := −z−ωW (z).

I start by establishing a useful preliminary result:

Lemma 1: Consider a model of type (5) and a rule of type (6). Then: (a) if φ = 0, then

ν = δ and P (z) = Q(z); (b) if φ 6= 0, then generically ν = δ + max(0, h−m) and

P (z) = Q(z)zmax(0,h−m) + φR(z)zmax(0,m−h). (8)

Proof : See Online Appendix A.4. �

This lemma generalizes similar preliminary results obtained in Section 2: in the speci�c

context of the basic NK model under Rule 1, we had δ = 2, m = 2, Q(z) = (σ/κ)[β −
(1 + β + κ/σ)z + z2] and R(z) = 1.21

20In the basic NK model, for instance, imposingW (z) 6= 0 rules out the variable vt = πt−1−βπt−κyt−1,
which corresponds to a backward-looking version of the Phillips curve (2). This variable is exogenous
because it can be rewritten, using the Phillips curve (2), as the expectation error vt = −β(πt−Et−1{πt}),
which implies that Et{vt+h} = 0 for h ≥ 1.

21The quali�er �generically� in the lemma refers again to the fact that ν = δ + max(0, h −m) for all
(φ, h) ∈ (R \ {0})× Z except (φ, h) = (−Q(0)/R(0),m), as discussed in Footnote 9.
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The polynomials Q(z) and R(z) will play a key role in my analysis. None of them depends

on the coe�cient φ or the horizon h of the rule. Q(z) is the reciprocal polynomial of the

characteristic polynomial under a policy-instrument peg (i.e. under the policy-instrument

rule it = 0), while R(z) is the reciprocal polynomial of the characteristic polynomial

under the �targeting rule� vt = 0. In (8), if we abstract from the factors zmax(0,h−m) and

zmax(0,m−h) (which capture lags and leads), then P (z) is a weighted sum of Q(z) and

R(z), and the relative weight of R(z) in this sum is the coe�cient φ. Loosely speaking,

as |φ| moves from zero to in�nity, P (z) moves from Q(z) to R(z), and the dynamics of

the system move from the dynamics under a peg (it = 0) to the dynamics under the

targeting rule vt = 0. In this paper, I focus on the �regular case� in which Q(z) and

R(z) have no roots exactly on C (i.e. no roots of modulus exactly equal to 1). I study

non-regular cases in a (longer) working-paper version (Loisel, 2022).

As in Section 2, let p denote the number of roots of P (z) inside C (counting multiplicity).

Blanchard and Kahn's (1980) root-counting condition for determinacy is p = ν. I assume

throughout the paper that Blanchard and Kahn's (1980) no-decoupling condition is met

(and I check that it is met in all the illustrations and applications I consider in the

paper).22 So, the determinacy status is multiplicity if p ≤ ν − 1, determinacy if p = ν,

and explosiveness if p ≥ ν + 1.

3.3 Determinacy status, independently of sgn(φ)

I start by generalizing Proposition 1 to the class of models (5) and the class of rules (6).

I will state the results below, in Proposition 5. Before stating the results, however, I

represent them diagrammatically in Figure 4, in order to guide the reading and facilitate

the understanding of Proposition 5 (like in Section 2, with Figure 1 and Proposition 1).

Figure 4 shows the determinacy status S(φ, h) in the pseudo half-plane (h, |φ|) ∈ Z×R+,

according to Proposition 5. In this �gure, Speg denotes the determinacy status under a

peg (Speg := S(0, h) for any h ∈ Z), while φ, φ̄, and h∗ will be de�ned in Proposition 5.

Proposition 5, which may look a bit hermetic at �rst sight (and in which r denotes the

number of roots of R(z) inside C, counting multiplicity), is actually nothing else than a

mathematical formulation of Figure 4:

22The �no-decoupling condition� requires that the system should not be �decoupled� in the sense of
Sims (2007). It is formulated as a matrix-rank condition in Blanchard and Kahn (1980, Page 1308),
and is often called the �rank condition� in the literature. Sims' (2007) bare-bones example of a system
meeting the root-counting condition but not the no-decoupling condition is xt = 1.1xt−1 + εt and
Et{yt+1} = 0.9yt + νt.
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Figure 4: Determinacy status for models of type (5) and rules of type (6),
independently of sgn(φ)

b Determinacy b Multiplicity b Explosiveness Not characterized in Proposi-
tion 5, may depend on sgn(φ)

Proposition 5 (Determinacy status, independently of sgn(φ), in the gen-

eral framework): Consider a model of type (5) and a rule of type (6). Let φ :=

minz∈C |Q(z)/R(z)|, φ̄ := maxz∈C |Q(z)/R(z)|, and h∗ := m+r−δ. Then, as represented
diagrammatically in Figure 4:

(a) ∀ |φ| < φ, ∀h ∈ Z, S(φ, h) = Speg;

(b) ∀ |φ| > φ̄, (i) ∀h ≤ h∗ − 1, S(φ, h) = E, (ii) S(φ, h∗) = D, (iii) ∀h ≥ h∗ + 1,

S(φ, h) = M ;

(c) ∃h̄ : (φ, φ̄)→ Z, (i) ∀ |φ| ∈ (φ, φ̄), ∀h ≥ h̄ (|φ|), S(φ, h) = M , (ii) ∀ε ∈ (0, φ̄− φ), h̄

is bounded on (φ+ ε, φ̄), (iii) if Speg = M , then h̄ is bounded on (φ, φ̄);

(d) ∃h : (φ, φ̄) → Z, (i) ∀ |φ| ∈ (φ, φ̄), ∀h ≤ h (|φ|), S(φ, h) = E, (ii) ∀ε ∈ (0, φ̄ − φ), h

is bounded on (φ+ ε, φ̄), (iii) if Speg = E, then h is bounded on (φ, φ̄).

Proof : See Online Appendix A.5. �

The intuitions behind Proposition 5 are identical or similar to those behind Proposition

1. In Point (a), as |φ| < φ, the structural equations dominate the rule in the system's

dynamics, and the determinacy status remains the same as under a peg. Compared to

Point (a) of Proposition 1, the novelty is that the determinacy status under a peg, Speg,

is no longer necessarily M : it can now also be D or E. In Point (b), as |φ| > φ̄, the rule

dominates the structural equations in the system's dynamics and makes the determinacy

status depend only on h. Compared to Point (b) of Proposition 1, the novelty is that the

pivotal horizon h∗ can now be di�erent from zero.

Points (c)-(i), (c)-(ii), (d)-(i), and (d)-(ii) of Proposition 5 generalize Point (d) of Propo-
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sition 1. For any given |φ| ∈ (φ, φ̄), as h → −∞ (resp. as h → +∞), the roots of P (z)

distribute themselves between inside and outside C (resp. between outside and inside C)
in proportion of the share of C on which the rule dominates the structural equations and

the share of C on which the structural equations dominate the rule; so, the number of in-

side roots increases less than one-for-one with |h|; since the number of non-predetermined

variables remains constant (resp. increases one-for-one with h), we eventually get more

(resp. fewer) inside roots than non-predetermined variables, and hence explosiveness

(resp. multiplicity). Determinacy may still obtain for arbitrarily large |h|'s, but only if

|φ| is arbitrarily close to φ, i.e. only if the portion of C on which the rule dominates the

structural equations is arbitrarily small.

Finally, Points (c)-(iii) and (d)-(iii) of Proposition 5 generalize Point (c) of Proposition

1. For |φ| ∈ (φ, φ̄), large positive (resp. negative) horizons h do not much �perturb�

the imploding (resp. exploding) equilibrium paths obtained under a peg, as the term

φEt{vt+h} (i.e. the right-hand side of the rule) is small on these paths; so, these horizons

preserve the determinacy status obtained under a peg if this status is multiplicity (resp.

explosiveness). I do not develop the intuition further, as it is the same intuition as for

Point (c) of Proposition 1 (discussed in detail in Subsection 2.2).

3.4 Simple numerical illustrations

A �rst simple numerical illustration of Proposition 5 (more speci�cally of the diagram-

matic Figure 4a) is provided by Figure 2 in Section 2. This �gure, which I have already

commented upon, shows the determinacy status S(φ, h) for Model 1 and Rule 1.

In order to provide additional illustrations of Proposition 5 (not only of Figure 4a, but also

of Figures 4b and 4c), and also in order to illustrate the next propositions numerically and

graphically, I consider, in addition to Model 1, four other simple calibrated monetary-

policy models. Table 1 presents the overall �ve models: two imply Speg = M , two

Speg = D, and one Speg = E. The table also indicates, for each model, the degree of

indeterminacy under a peg, dpeg := δ − q ∈ Z, where q denotes the number of roots of

Q(z) inside C counting multiplicity (Speg = M if dpeg ≥ 1, Speg = D if dpeg = 0, and

Speg = E if dpeg ≤ −1).

All these models share the following �canonical� features: they have two simple structural

equations; these equations are an IS equation and a Phillips curve; and the two endoge-

nous variables set by the private sector are output and in�ation. The IS equation and
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Table 1: Five simple calibrated monetary-policy models

No. Model Calibration Speg dpeg

1 Basic NK Model Woodford (2003) M 1

2 McKay et al. (2017) McKay et al. (2017) M 1

3 Gabaix (2020) Gabaix (2020) D 0

4 Bilbiie (2008) Bilbiie (2008) D 0

5 Svensson (1997) and Ball (1999) Ball (1999) E -1

the Phillips curve of Models 2-4 are

yt = αEt{yt+1} −
1

σ
(it − Et{πt+1}) ,

πt = βEt{πt+1}+ κyt,

with (α, β, σ, κ) equal to (0.97, 0.99, 2.67, 0.02) in Model 2, (0.85, 0.792, 5, 0.11) in Model

3, and (1, 0.99,−0.11, 0.228) in Model 4. These models introduce, into the basic NK

model, income risk and borrowing constraints (Model 2), bounded rationality (Model 3),

or limited asset-markets participation (Model 4). Compared to the basic NK model (in

which α is implicitly equal to 1), Model 2 �discounts� the IS equation (i.e. reduces α),

Model 3 discounts both the IS equation and the Phillips curve (i.e. reduces both α and

β), and Model 4 inverts the slope of the IS equation (i.e. makes σ negative). Finally,

unlike Models 1-4, Model 5 is non-micro-founded and purely backward-looking; its IS

equation and Phillips curve are

yt = λyt−1 − µ (it−1 − πt−1) ,

πt = πt−1 + χyt−1,

with (λ, µ, χ) = (0.8, 1, 0.4).

Figure 5 shows the determinacy status S(φ, h) for Models 2-5 and Rule 1 with φ > 0.23

It provides simple numerical illustrations of the diagrammatic Figures 4a, 4b and 4c.

The coe�cient and horizon values φ1, φ−1, bh1c and dh1e featuring in Figure 5 will be

introduced and commented upon in the next subsections.

Note that the �topology� of the E, D and M regions is simple in Figures 5a, 5b and

5d: each region is connected, and the borders between regions are monotonic functions

linking h to φ. However, the topology is more complex in Figure 5c (even though Model

4 looks as simple as Models 2, 3 and 5): the M region is disconnected, and the borders

between regions are non-monotonic, with �lace patterns.�

23I relegate the results for φ < 0 to Online Appendix A.9.
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Figure 5: Determinacy status for Models 2-5 and Rule 1 with φ > 0

b D

b M

b E

Even though Models 2-5 are clearly not quantitative, two numerical features of Figure 5

are worth emphasizing. First, compared to standard values of φ in the literature (often

between 1 and 2), the lower threshold φ is of the same order of magnitude or several orders

of magnitude smaller, while the upper threshold φ̄ is of the same order of magnitude or

one or several orders of magnitude larger. Second, in Figure 5d, the horizon threshold

at and below which the rule can no longer deliver determinacy is minus one period; so,

in this example, a central bank that would react to in�ation with a delay of at least one

period (say because of data-publication lags) would necessarily fail to ensure determinacy,

no matter how strongly or weakly it reacts to in�ation.

3.5 Determinacy status for some φ intervals

Proposition 5 is silent about the determinacy status in the hatched regions of Figure 4,

which are the only regions in which the determinacy status may depend on the sign of

φ (i.e. in which we may have S(φ, h) 6= S(−φ, h)). These hatched regions lie in the two

horizontal bands φ ∈ (φ, φ̄) and φ ∈ (−φ̄,−φ) of the pseudo plane (h, φ) ∈ Z× R.

I now identify, within these two horizontal bands (or coinciding with them), some hori-
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zontal bands that contain no determinacy zones. In other words, I identify some intervals

of φ values, inside (φ, φ̄) and (−φ̄,−φ), for which S(φ, h) 6= D for all h ∈ Z. I obtain the

following proposition, which generalizes Proposition 2 along several dimensions:

Proposition 6 (Determinacy status for some φ intervals in the general frame-

work): Consider a model of type (5) and a rule of type (6). Let φ1 := −Q(1)/R(1),

φ−1 := |Q(−1)/R(−1)|, Φa := {φ1, sgn(φ1)φ−1} and Φb := {φ1,− sgn(φ1)φ−1}. Then:
(a) if dpeg is even and |φ1| < φ−1, then ∀φ ∈ (min Φa,max Φa), ∀h ∈ Z, S(φ, h) 6= D;

(b) if dpeg is odd and |φ1| < φ−1, then ∀φ ∈ (min Φb,max Φb), ∀h ∈ Z, S(φ, h) 6= D;

(c) if dpeg is odd and |φ1| > φ−1, then ∀φ ∈ (−φ−1, φ−1), ∀h ∈ Z, S(φ, h) 6= D.

Proof : See Online Appendix A.6. �

Recall that determinacy obtains if and only if p = ν (where, as a reminder, p denotes

the number of roots of P (z) inside C, and ν the number of non-predetermined variables).

The proof of Proposition 6 simply shows that p − ν is odd, and hence non-zero, inside

the φ intervals mentioned in the proposition (for all h ∈ Z). The endpoints of these φ

intervals are φ1, φ−1, or −φ−1 (which all belong to [−φ̄,−φ] ∪ [φ, φ̄]). The reason is the

following: for a given h (and hence a given ν), as φ varies, the parity of p− ν changes if

and only if a real root of P (z) crosses the unit circle, that is to say if and only if φ goes

through a value such that P (1) = 0 or P (−1) = 0. Now, we have P (1) = 0 if and only if

φ = φ1, and P (−1) = 0 only if φ ∈ {φ−1,−φ−1}, as can be readily checked.

In the basic NK model under Rule 1 (studied in Section 2), we have dpeg = 1, φ1 = φ

and φ−1 = φ̄. So, Point (b) of Proposition 6 applies, and we get no determinacy for all

(φ, h) ∈ (−φ̄, φ)×Z, and hence in particular for all (φ, h) ∈ (−φ̄,−φ)×Z, which simply

amounts to Proposition 2. Similarly, Points (a) and (b) of Proposition 6 also imply no

determinacy for all (φ, h) ∈ (−φ̄,−φ)×Z in Models 2, 3 and 5 under Rule 1, as the �rst

two lines of Table 2 explain.24

Proposition 6 has some implications for Models 1-5 under Rule 1 with a negative coe�-

cient φ ∈ (−φ̄,−φ), but not with a positive coe�cient φ ∈ (φ, φ̄). In general, however,

it can have implications for monetary-policy models under rules that make the interest

rate react to in�ation and/or output with a positive coe�cient φ ∈ (φ, φ̄). To illustrate

this point in a simple way, I consider a rule that makes the interest rate react only to

24Proposition 6 does not apply to Model 4 under Rule 1, because it does not cover the case in which
dpeg is even and |φ1| > φ−1. In this case, there may be no value of φ ∈ (−φ̄,−φ) ∪ (φ, φ̄) such that
S(φ, h) 6= D for all h ∈ Z, as Figures 5c (in the main text) and A.2c (in Online Appendix A.9) illustrate.
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Table 2: Some illustrations of Proposition 6

Model(s) dpeg Rule φ1 φ−1
Point of φ interval

Figure(s)Prop. 6 with no D

1, 2, 5 odd 1 = φ = φ̄ b (−φ̄, φ) 2, A.2

3 even 1 = −φ = φ̄ a (−φ̄,−φ) A.2

1 odd (9) = φ̄ ∈ (φ, φ̄) c (−φ−1, φ−1) 6a, A.3

2 odd (9) ∈ (φ, φ̄) = φ̄ b (−φ̄, φ1) 6b, A.3

Note: Figures A.2 and A.3 can be found in Online Appendix A.9.

output:

it = φEt {yt+h} , (9)

where (φ, h) ∈ R×Z. Figure 6 shows the determinacy status S(φ, h) for Models 1-2 and

this rule with φ > 0.25 In both Figures 6a and 6b, there is no determinacy for any h ∈ Z
for a �nite range of φ values just above φ. This result is a consequence of Proposition 6,

as the last two lines of Table 2 explain.

Figure 6: Determinacy status for Models 1-2 and Rule (9) with φ > 0

b D

b M

b E

In such a case (of no determinacy for any h ∈ Z for φ just above φ), Proposition 5

and the associated Figure 4 straightforwardly imply that the determinacy region is both

left-bounded and right-bounded in the pseudo half-plane (h, φ) ∈ Z × R+. Therefore,

both su�ciently backward-looking stabilization policies and su�ciently forward-looking

ones necessarily fail to deliver determinacy, no matter how strongly or weakly the policy

instrument reacts to the state of the economy. This result is illustrated in a particularly

stark way in Figure 6a, where determinacy obtains only for the horizons −1 and 0.26

25I relegate the results for φ < 0 to Online Appendix A.9.
26For Models 1-2 under Rule (9), Proposition 6 implies no determinacy for any h ∈ Z not only for φ just

above φ, but also for φ just below −φ, as clear from Table 2. So, Proposition 5 and the associated Figure
4 imply that the determinacy region is left- and right-bounded in the whole pseudo plane (h, φ) ∈ Z×R
(not only in the pseudo half-plane (h, φ) ∈ Z× R+).
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3.6 Taylor principle

I now study the validity of the Taylor principle as a condition for determinacy. I start

by providing a formal, general de�nition of Woodford's (2001, 2003) long-run Taylor

principle. Woodford (2001, 2003) mostly discusses this principle in the speci�c context of

the basic NK model under several alternative parametric families of interest-rate rules.

His discussion suggests that this principle should be thought of, in a broader context, as

an inequality condition obtained by replacing, in the equality condition for the dynamic

system to have an eigenvalue equal to 1, the equality sign with an inequality sign.27

The system (5)-(6) has an eigenvalue equal to 1 if and only if P (1) = 0, that is to say

if and only if φ = φ1. In all the examples considered by Woodford (2001, 2003), φ1

is positive and the Taylor principle is φ > φ1, not φ < φ1 (i.e., the policy instrument

should react to the variable su�ciently strongly, not su�ciently weakly). So, I propose

the following de�nition of the Taylor principle:

De�nition 1 (Taylor principle): If φ1 > 0, then the Taylor principle is φ > φ1.

This de�nition is a generalization of the de�nition considered in Section 2. The latter

de�nition was tailored to the speci�c context of the basic NK model; it de�ned the

Taylor principle as a more-than-one-for-one permanent reaction of the interest rate to a

permanent change in in�ation. De�nition 1, more generally, de�nes the Taylor principle

as higher-than-φ1 coe�cient φ in the policy-instrument rule, where φ1 is the only value

of φ that makes the dynamic system have an eigenvalue equal to 1.28

Proposition 5 and the associated Figure 4 have a straightforward implication for the

Taylor principle, independently of the value of φ1: for h ∈ Z \ {h∗}, the Taylor principle
is not su�cient for determinacy. The following proposition focuses instead on results

that are conditional on the value of φ1; in this proposition, I use the initialism �TP�

27In the words of Woodford (2003, Chapter 4, Page 256, Footnote 27): �One observes quite generally
− in the case of any family of policy rules that involve feedback only from in�ation and output, regardless
of how many lags of these might be involved − that the boundary between sets of coe�cients that satisfy
the Taylor principle and those that do not will consist of coe�cients for which there is an eigenvalue
exactly equal to 1. (...) It follows that a real eigenvalue crosses the unit circle as the sign of the inequality
corresponding to the Taylor principle changes. This boundary is therefore one at which the number of
unstable eigenvalues increases by one. Often this results in moving from a situation of indeterminacy to
determinacy, though I do not seek to establish general conditions for this.�

28Recent examples of De�nition 1's Taylor principle in the literature, outside the context of the basic
NK model, include the �income-risk augmented Taylor principle� of Acharya and Dogra (2020), the
�HANK Taylor principle� of Bilbiie (2024), and the �modi�ed Taylor principle� of Gabaix (2020) (as long
as φ1 > 0).
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for �Taylor principle�, and I use the expression �the Taylor principle is locally su�cient

for determinacy� in the same sense as in Subsection 2.5 (i.e. in the sense ∃ε > 0,

∀φ ∈ (φ1, φ1 + ε), S(φ, h) = D):29

Proposition 7 (Taylor principle in the general framework): Consider a model of

type (5) and a rule of type (6) with φ ≥ 0. Then:

(a) if φ1 = φ̄, then: (i) ∀h ≤ h∗ − 1, the TP is su�cient for E, (ii) for h = h∗, the TP

is su�cient for D, (iii) ∀h ≥ h∗ + 1, the TP is su�cient for M ;

(b) if φ1 ∈ (φ, φ̄), then: (i) the TP is locally su�cient for D for �nitely many or no h's,

(ii) if φ1 < φ−1 and dpeg is even, then ∀h ∈ Z, the TP is not locally su�cient for D,

(iii) if φ1 < φ−1 and dpeg is odd, then ∀h ∈ Z, the TP is necessary for D;

(c) if φ1 = φ, then: the TP is necessary and locally su�cient for D if and only if (dpeg = 1

and h < h1) or (dpeg = −1 and h > h1), where h1 := m+R′(1)/R(1)−Q′(1)/Q(1).

Proof : See Online Appendix A.7. �

Points (a) and (b)(i) of this proposition straightforwardly follow from Proposition 5 and

Figure 4, while Points (b)(ii) and (b)(iii) straightforwardly follow from Proposition 6.

Point (c) is a generalization of Proposition 3 and can be understood as follows. When

φ1 = φ, the degree of indeterminacy ν − p is equal to dpeg for any φ ∈ (0, φ1) and any

h ∈ Z. As φ goes from below φ1 to above φ1, one root of P (z) crosses C (at point 1),

so the degree of indeterminacy increases or decreases by one (and thus the determinacy

status cannot become D if |dpeg| 6= 1). When h < h1, the root goes from outside to

inside C, so the determinacy status changes from M to D (resp. remains E) if dpeg = 1

(resp. dpeg = −1), re�ecting the fact that increasing the weight on outcomes su�ciently

distant in the past favors exploding paths. Alternatively, when h > h1, the root goes

from inside to outside C, so the determinacy status remains M (resp. changes from E

to D) if dpeg = 1 (resp. dpeg = −1), re�ecting the fact that increasing the weight on

outcomes su�ciently distant in the future favors imploding paths.

Proposition 7 emphasizes that the validity of the Taylor principle as a condition for

determinacy across di�erent horizons depends crucially on whether (a) φ1 = φ̄, or (b)

φ1 ∈ (φ, φ̄), or (c) φ1 = φ. The Taylor principle can be necessary and locally su�cient for

determinacy in any of the three Cases (a), (b) and (c), but only for a single horizon in

Case (a) (the horizon h = h∗, as illustrated in Figure 6a), only for �nitely many horizons

29Point (c) of the proposition rests on the following additional regularity assumption: if 1 ∈
argminz∈C |Q(z)/R(z)|, then argminz∈C |Q(z)/R(z)| = {1}.
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in Case (b) (as illustrated in Figure 6b), and only for an in�nity of horizons in Case (c)

(the horizons h < h1 or h > h1, as illustrated in Figures 2a, 5a and 5d).

In Case (a), the Taylor principle φ > φ1 = φ̄ makes the rule dominate the structural

equations in the system's dynamics; as a result, the degree of indeterminacy ν−p increases
one-for-one with the horizon h in the rule, and determinacy obtains only for a single

horizon (h∗). In Case (c), by contrast, the Taylor principle φ > φ1 = φ prevents the

structural equations from dominating the rule in the system's dynamics; locally, for φ

just above φ1, the structural equations are close to dominating the rule, so the degree of

indeterminacy ν − p and the determinacy status do not change with the horizon h in the

rule, except only once, when h crosses the threshold h1.

The distinction φ1 = φ vs. φ1 = φ̄ also sheds light on some contrasting results in the

monetary-policy literature about the Taylor principle as a guide for determinacy. In the

basic NK model under Rule 1, we have φ1 = 1, and for h = 1 the Taylor principle

φ > φ1 is necessary and locally su�cient for determinacy (as illustrated in Figure 2a).

In Bilbiie's (2008) model under Rule 1, we also have φ1 = 1, but for h = 1 the necessary

and su�cient condition for determinacy is the �inverted Taylor principle� φ < φ1 (as

highlighted by Bilbiie, 2008, and as illustrated in Figure 5c). Key to understand these

contrasting results is the fact that φ1 = φ in the former setup, while φ1 = φ̄ in the latter

setup (and h = 1 > h∗ in both setups). Thus, in the former setup, the Taylor principle

avoids multiplicity by preventing the structural equations from dominating the rule; in

the latter setup, the inverted Taylor principle avoids multiplicity by preventing the rule

from dominating the structural equations.

Similarly, Benhabib et al. (2001) show that in the standard �exible-price money-in-the-

utility-function model, under Rule 1 with h = 1, the Taylor principle (resp. the inverted

Taylor principle) is locally necessary and su�cient for determinacy if consumption and

real money balances are complements (resp. substitutes). What distinguishes these two

cases (complements and substitutes), and can explain their contrasting implications for

the Taylor principle, is not the value of φ1 (equal to 1 in both cases), but rather the fact

that φ1 = φ̄ in one case, while φ1 = φ in the other.30

30Other illustrations of the inverted Taylor principle φ < φ1 being necessary and locally su�cient for
determinacy (with φ1 = φ̄) can be found in Figures 5c and 6a for h = −1.
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3.7 Rule inertia

I now turn to inertial rules, i.e. rules making the policy instrument react not only to a

variable vt of type (7) at horizon h with coe�cient φ, but also to its own past values:

ρ(L)it = ρ(1)φEt {vt+h} , (10)

where φ ∈ R \ {0}, h ∈ Z, and ρ(z) ∈ R[z] with ρ(0) 6= 0. In this paper, I focus on the

�regular case� in which ρ(z) has no roots exactly on C (i.e. no roots of modulus exactly

equal to 1). I study non-regular cases in the (longer) working-paper version (Loisel, 2022).

Three remarks are in order about Rule (10). First, I allow ρ(z) to have some roots inside

C, in which case the rule is �superinertial � in the sense of Giannoni and Woodford (2002)

and Woodford (2003, Chapter 8); I denote by dsup ∈ N the degree of superinertia of the

rule, i.e. the number of roots of ρ(z) inside C (counting multiplicity). Second, unlike

previously, I now rule out the speci�c case φ = 0, as Blanchard and Kahn's (1980) no-

decoupling condition (discussed in Footnote 22) is violated in this case when dsup ≥ 1.

Third, following standard practice, I have multiplied the coe�cient φ by the scale factor

ρ(1) in the rule, in order to leave unchanged the threshold value φ1 of the long-run Taylor

principle.

Let S̃ denote the function Z → {M,D,E} such that S̃(d) = M if d ≥ 1, S̃(d) = D if

d = 0, and S̃(d) = E if d ≤ −1. I obtain the following proposition, which generalizes

Proposition 4 along several dimensions:

Proposition 8 (Rule inertia in the general framework): Propositions 5-7 still

hold for Rule (10) instead of Rule (6), if in these propositions Q(z) is replaced by

Q(z)ρ(z)/ρ(1), dpeg by dpeg − dsup, and Speg by S̃(dpeg − dsup). These replacements leave

φ1 and h∗ unchanged, multiply φ−1 by |ρ(−1)/ρ(1)|, and add −ρ′(1)/ρ(1) to h1.

Proof : See Online Appendix A.8. �

Proposition 8 states that if Rule (10) is not superinertial (dsup = 0), then replacing the

non-inertial Rule (6) with the inertial Rule (10) simply amounts to replacing Q(z) with

Q(z)ρ(z)/ρ(1) in the expression (8) of P (z) (just like in Proposition 4, in which we had

ρ(z) = 1 − ρz and hence ρ(z)/ρ(1) = (1 − ρz)/(1 − ρ)). The intuition is the same as

for Proposition 4: in essence, introducing some inertia into the reaction of the policy

instrument to the state of the economy (i.e. replacing it by ρ(L)it/ρ(1) in the rule),
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leaving unchanged the reaction of the economy to the policy instrument (i.e. leaving

the structural equations unchanged), is equivalent, as far as the determinacy status is

concerned, to introducing the same inertia into the reaction of the economy to the policy

instrument (i.e. replacing A(L)Xt by A(L)ρ(L)Xt/ρ(1) in the structural equations, and

hence replacing Q(z) by Q(z)ρ(z)/ρ(1)), leaving unchanged the reaction of the policy

instrument to the state of the economy (i.e. leaving the rule unchanged).

In turn, the replacement of Q(z) by Q(z)ρ(z)/ρ(1) a�ects the previous results quantita-

tively, notably by adding −ρ′(1)/ρ(1) to h1 (just like in Proposition 4, in which we had

ρ(z) = 1−ρz and hence −ρ′(1)/ρ(1) = ρ/(1−ρ)). However, because Speg is not modi�ed

in Proposition 5 (since dsup = 0), the results do not change qualitatively, in the sense that

if the determinacy status was characterized by Figure 4a (resp. 4b, 4c) under Rule (6),

then it is still characterized by Figure 4a (resp. 4b, 4c) under Rule (10).

Alternatively, if Rule (10) is superinertial (dsup ≥ 1), then replacing Rule (6) with Rule

(10) amounts to replacing not only Q(z) with Q(z)ρ(z)/ρ(1), but also dpeg with dpeg−dsup
and Speg with S̃(dpeg−dsup). In this case, the results change qualitatively in the following

sense: if Speg = M , then Speg may be replaced by D or E in Proposition 5, and we may

accordingly move from Figure 4a to Figure 4b or 4c. If Speg = D, then Speg is replaced by

E in Proposition 5, and we move accordingly from Figure 4b to Figure 4c. These changes

simply re�ect the fact that superinertia generates exploding paths for su�ciently small

|φ|'s.

Because superinertia generates exploding paths for su�ciently small |φ|'s, it can be

used to o�set multiplicity and deliver determinacy. More speci�cally, for models with

Speg = M , replacing a non-inertial rule (6) with a superinertial rule (10) whose degree

of superinertia is equal to the degree of indeterminacy under a peg (i.e. dsup = dpeg)

moves us from Figure 4a to Figure 4b. So, for su�ciently small (but non-zero) |φ|'s,
the superinertial rule ensures determinacy for any horizon h ∈ Z. This result echoes,

and sheds light on, a result obtained by Giannoni and Woodford (2002, 2003, 2005) and

Woodford (2003, Chapter 8) about the degree of superinertia of their �robustly optimal

rules,� which they �nd is equal to the degree of indeterminacy under a peg (in models

with Speg = M).

Alternatively, for models with Speg ∈ {D,E}, replacing a non-inertial rule (6) with a

superinertial rule (10) moves us from Figure 4b to Figure 4c or keeps us in Figure 4c. So,

for su�ciently small (but non-zero) |φ|'s, the superinertial rule leads to explosiveness for

any horizon h ∈ Z. This result o�ers an explanation for the propensity of superinertial
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rules to generate explosiveness in backward-looking models, i.e. models with δ = 0 and

hence with Speg ∈ {D,E} (Rudebusch and Svensson, 1999, and Levin and Williams,

2003).

3.8 Rules with several variables

The classes of rules of type (6) or (10), which I have considered so far, involve a sin-

gle variable vt (even though vt can itself be de�ned as a linear combination of several

variables). In the monetary-policy literature, however, interest-rate rules often involve

several variables, like in�ation and output. It is easy to extend the previous results to

rules involving several variables. To see how, consider the extended class of rules of type

ρ(L)it = ρ(1)
(
φEt {vt+h}+

∑J

j=1
φjEt

{
vj,t+hj

})
, (11)

where ρ(z) ∈ R[z], ρ(0) 6= 0, J ∈ N \ {0}, (φ, φ1, ..., φJ) ∈ RJ+1, (h, h1, ..., hJ) ∈ ZJ+1,

and vt,v1,t,...,vJ,t are variables of type (7). To analyze how the determinacy status for

Model (5) and Rule (11) depends on (φ, h), for some given ρ(z) and (φj, hj)1≤j≤J , I can

simply rewrite Rule (11) as

ρ(L)it = ρ(1)
(
ĩt +

∑J

j=1
φjEt

{
vj,t+hj

})
, (12)

ĩt = φEt {vt+h} , (13)

and then proceed as if (12) were an additional structural equation, it an additional

variable set by the private sector, ĩt the policy instrument, and (13) the rule. So, I can

reformulate the problem in a way that involves a modi�ed model, composed of (5) and

(12), and a modi�ed rule, (13), which is of type (6); and I can then apply Propositions

5-7 to this modi�ed model and that modi�ed rule.

3.9 Discussion

What broad, qualitative principles for stabilization policy have we learned from this

section? To achieve determinacy, the policy instrument should not react too weakly to

the state of the economy (except if the model delivers determinacy under a peg), nor too

strongly (except at the horizon h∗). It should not react to the state of the economy too

far away in the future nor too far away in the past (except possibly with a coe�cient

below or just above φ). And depending on the value of φ1, the Taylor principle φ > φ1

may be a locally good guide for determinacy only for a single horizon (h∗), or for a �nite
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number of horizons, or for an in�nite number of horizons (all horizons up to h1 or all

horizons from h1, where h1 crucially depends on the inertia coe�cients).

How quantitatively relevant are these principles? What are the values of the coe�cient

and horizon thresholds φ, φ̄, φ1, φ−1, h
∗ and h1 in quantitative models under standard

policy-instrument rules? The next section makes a �rst step in addressing these questions.

4 Quantitative application to monetary policy

In this brief section, I apply my general results to 134 quantitative monetary-policy

models, under rules making the interest rate react to in�ation alone, or to both in�ation

and output, with or without inertia. The 134 models are the 140 rational-expectations

models of the Macroeconomic Model Data Base (MMB) described in Wieland et al.

(2012, 2016), minus 6 models that do not satisfy at least one regularity condition under

each of the rules considered.31

4.1 MMB models

The current MMB version (3.1) contains 140 rational-expectations models, which are

all discrete-time, in�nite-horizon models of type (5). These models di�er in various

dimensions: micro-founded or not, medium- or large-scale, closed- or open-economy, with

nominal and real rigidities of this or that nature, with or without �nancial frictions, with

a representative agent or heterogenous agents, calibrated or estimated, using US data or

euro-area data or data from other countries, used or not used for policymaking (e.g. at

the Federal Reserve Board, the European Central Bank or the International Monetary

Fund). In all these models, the policy instrument is the short-term nominal interest rate,

and the period is one quarter. Table 3 reports the distribution of dpeg across these models:

most of them are such that dpeg = 1 (and hence Speg = M).

Table 3: Distribution of dpeg across MMB models (140 models)

Value of dpeg -1 0 1

Number of models 6 4 130

31Online Appendix A.10 lists the model-and-rule combinations that do not satisfy at least one regu-
larity condition, and speci�es which regularity condition they do not satisfy.
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4.2 Rules 1 and 2

Under Rule 1, there are 10 MMB models that do not satisfy at least one regularity

condition; so, I focus on the remaining 130 models. Figure 7 reports the distribution of

the coe�cient and horizon thresholds across these models under Rule 1, as well as the

distribution of HTP types (where HTP denotes the set of horizons h ∈ Z such that the

Taylor principle is necessary and locally su�cient for determinacy).32

As Figures 7a, 7d and 7f show, the values of φ, φ1, h
∗ and bh1c are typically of the same

order of magnitude as standard values of φ and h in the literature. More speci�cally,

these values are, for a majority of MMB models, equal or quantitatively close to their

values in the calibrated basic NK model (Model 1), i.e. the values φ = φ1 = 1, h∗ = 0

and bh1c = 1.33 Similarly, HTP is of type {h|h < h1} for a majority of MMB models

(Figure 7e), just like in the basic NK model. In 59 models, the values of φ, φ1, h
∗ and

bh1c are jointly equal to their values in the calibrated basic NK model, and HTP is of

type {h|h < h1}. So, in these 59 models, the Taylor principle is φ > 1, it is not su�cient

for determinacy if h 6= 0, and it is necessary and locally su�cient for determinacy if and

only if h ≤ 1, just like in the calibrated basic NK model.

The values of φ−1 and φ̄, meanwhile, are typically one or several orders of magnitude

larger than standard values of φ in the literature, as apparent in Figure 7b − although

they are of the same order of magnitude in a few models: φ−1 ∈ (0, 2) in 6 models,

and φ̄ ∈ (0, 2) in 5 models. Figure 7c shows that (φ1, φ−1) = (φ, φ̄) in most models,

which implies that Case (b) in Proposition 6 and Case (c) in Proposition 7 are the most

common of the three alternative cases considered in each proposition. In 114 models,

we have |dpeg| = 1 and φ ≤ φ1 < φ−1 = φ̄; so, as Proposition 6 implies, there is no

determinacy for any (φ, h) ∈ (−φ̄, φ1)× Z in these 114 models, just like in the basic NK

model.

How do all these distributions change when the non-inertial Rule 1 is replaced by the

inertial Rule 2? The answer can be largely deduced from Proposition 8 (and, thus, the

new distributions do not need to be shown in �gures). More speci�cally, Proposition 8

straightforwardly implies that for all models, φ1 and h
∗ are unchanged, φ−1 is multiplied

by (1 + ρ)/(1 − ρ), and h1 increases by ρ/(1 − ρ). Proposition 8 also implies that φ

32Online Appendix A.11 describes in detail the method that I use to compute the threshold values.
33In practice, the values that I obtain for φ and φ1 may be extremely close to 1 but not exactly equal

to 1, even when it can be shown that their true value is 1. In Figure 7a, I use the shortcut �φ = 1� (resp.

�φ1 = 1�) to denote the case in which the distance from φ (resp. φ1) to 1 is lower than 10−7.
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Figure 7: Some distributions across MMB models under Rule 1 (130 models)
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is unchanged for the 98 models with φ1 = φ under Rule 1; that φ̄ is multiplied by

(1 + ρ)/(1 − ρ) for the 114 models with φ−1 = φ̄ under Rule 1; and that HTP remains

of type {h|h < h1} for the 96 models with HTP of this type under Rule 1.34 So, to sum

34The reason is that argminz∈C |(1− ρz)/(1− ρ)| = {1} and argmaxz∈C |(1− ρz)/(1− ρ)| = {−1}.
So, if argminz∈C |Q(z)/R(z)| = {1} (resp. argmaxz∈C |Q(z)/R(z)| = {−1}), then argminz∈C |(1− ρz)
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up, under Rule 2, φ and φ1 are still predominantly equal or close to 1; φ̄ and φ−1 are

still typically very large; h∗ is still 0 and HTP still of type {h|h < h1} for a majority

of models; and the main change is, thus, that h1 is now ρ/(1 − ρ) quarters higher than

under Rule 1. For ρ = 0.8, for instance, h1 is 4 quarters higher than under Rule 1, and

bh1c is typically equal to 5 quarters, as opposed to 1 quarter under Rule 1.35

4.3 Other rules

I now introduce output into Rule 1 in two di�erent ways:

it = φEt {πt+h + (1/3)yt+h} , (Rule 3)

it = φEt {πt+h}+ (1/2)yt, (Rule 4)

where (φ, h) ∈ R × Z. Unlike Rule 4, Rule 3 makes the interest rate react to output at

the same horizon as in�ation, and with a proportional coe�cient. In the speci�c case

(φ, h) = (1.5, 0), Rules 3 and 4 coincide with each other and take the familiar form

it = 1.5πt + 0.5yt.

Overall, the results under Rules 3 and 4 are similar to those under Rule 1 (shown in

Figure 7). So, I relegate most of the corresponding �gures to Online Appendix A.12. In

a nutshell, φ and φ1 are still predominantly close to 1; φ̄ and φ−1 are still typically very

large (although they are low again, between 0 and 2, in a few models); and for a majority

of models, h∗ is still 0 and HTP still of type {h|h < h1} (Figure 8a).36 The result that φ1

is approximately unchanged in most models (and exactly unchanged in a few models), as

we move from Rule 1 to Rules 3 and 4, simply re�ects the fact that the long-run Phillips

curve is approximately vertical in most models (and exactly vertical in a few models).

The most notable change is that the distribution of bh1c has shifted rightwards (for

models with HTP = {h|h < h1}): the median of bh1c is now 3.5 quarters under Rule 3

and 6 quarters under Rule 4 (Figure 8b), as opposed to 1 quarter under Rule 1 (Figure

7f). So, the most notable e�ect of introducing output into Rule 1 is to push forward the

maximum horizon for which the Taylor principle is necessary and locally su�cient for

determinacy.

Q(z)/[(1− ρ)R(z)]| = {1} (resp. argmaxz∈C |(1− ρz)Q(z)/[(1− ρ)R(z)]| = {−1}). Therefore, if φ1 = φ

(resp. φ−1 = φ̄) under Rule 1, then φ1 = φ (resp. φ−1 = φ̄) also under Rule 2.
35In Online Appendix A.12, I show the distributions of HTP types and bh1c under Rule 2, and I discuss

these distributions in more detail.
36For a few models in Figure 8a, HTP is not de�ned because the Taylor principle itself is not de�ned,

as φ1 < 0.
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Figure 8: Some distributions across MMB models under Rules 3-4 (131-132 models)

Introducing inertia into Rules 3 and 4, i.e. more speci�cally replacing them with

it = ρit−1 + (1− ρ)φEt {πt+h + (1/3)yt+h} , (Rule 5)

it = ρit−1 + (1− ρ) [φEt {πt+h}+ (1/2)yt] , (Rule 6)

where ρ ∈ (0, 1) and (φ, h) ∈ R× Z, pushes bh1c further forward (notably, but not only,

for models with HTP = {h|h < h1}). This e�ect on bh1c of replacing Rule 3 (resp. Rule

4) with Rule 5 (resp. Rule 6) is identical (resp. similar) to the e�ect on bh1c of replacing
Rule 1 with Rule 2; so, I relegate the corresponding �gures to Online Appendix A.12.

4.4 Discussion

This application to interest-rate rules in MMB models shows that the new principles

for stabilization policy can be quantitatively relevant, at least for conventional monetary

policy, as the values that I obtain for the coe�cient and horizon thresholds are typically

(for φ, φ1, h
∗ and h1) or occasionally (for φ̄ and φ−1) of the same order of magnitude as

standard values of φ and h in the literature. Of course, much remains to be done to assess

the quantitative relevance of these new principles more widely: beyond Rules 1-6, there

are plenty of other interest-rate rules of type (11) to which the results could be applied,

which di�er in the variable vt, the additional variables vj,t, and the coe�cients φj and

horizons hj of these additional variables. Moreover, there are other policy instruments

than the interest rate, and other models than the MMB models.

The application also provides guidelines for �nding a robust interest-rate rule, in the

sense of an interest-rate rule delivering determinacy across a wide range of alternative
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monetary-policy models. Using �ve models (which now belong to the MMB) and a grid

of rule-coe�cient values, Levin et al. (2003) identi�ed four characteristics of interest-rate

rules that deliver determinacy: (i) �a relatively short in�ation forecast horizon,� (ii) �a

moderate degree of responsiveness to the in�ation forecast,� (iii) �a substantial degree of

policy inertia,� and (iv) �an explicit response to the current output gap.� My application

shows that these four characteristics actually favor determinacy in most MMB models.

In most MMB models, dpeg = 1 and both φ and φ1 are low to moderate, implying

that Characteristics (i) and (ii) favor determinacy (given Propositions 5 and 6, and the

associated Figure 4a). In most MMB models, HTP is of type {h|h < h1}, where bh1c is
typically equal to only 1 quarter for the non-inertial and output-free Rule 1, but increases

(unboundedly) with the inertia coe�cient and (signi�cantly) with the presence of output

in the rule (especially current output, like in Rules 4 and 6), implying that Characteristics

(i), (iii) and (iv) favor determinacy.

Importantly, Propositions 5-8, which provide new insights into the forces at work behind

determinacy, multiplicity and explosiveness, o�er an explanation for why Characteristics

(i)-(iii) favor determinacy. They also show that these three characteristics, qualitatively

speaking, favor determinacy in a broad class of stabilization-policy models (not just MMB

monetary-policy models) and for a broad class of variables in the policy-instrument rule

(not just in�ation in the interest-rate rule) − in essence, in all models of type (5) with

dpeg = 1, and for all variables vt of type (7).

5 Conclusion

This paper has established some simple, easily interpretable, necessary or su�cient con-

ditions for determinacy for a broad class of policy-instrument rules in a broad class of

dynamic rational-expectations models. These determinacy conditions lead to new, gen-

eral principles for stabilization policy in terms of whether, and how strongly or weakly, to

react to any variable, at any horizon, in any model, with any policy instrument. Building

on these conditions, the paper has characterized the scope of validity of (a generalized

version of) the long-run Taylor principle as a condition for determinacy. All these results

can be applied to conventional monetary policy, unconventional monetary policy, �scal

policy, macroprudential policy, or any other stabilization policy. The paper has made a

�rst step in this direction by applying the results to standard interest-rate rules in 134

quantitative monetary-policy models. This application shows that the new principles for

stabilization policy are operational and can be quantitatively relevant. Overall, the paper

38



thus opens new horizons for the study of stabilization policies, and paves the way for new

qualitative and quantitative research.
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Appendix: Proof of Proposition 1

Point (a). To prove Point (a), I use the theorem of Rouché (1862). I refer the reader

to Henrici (1988, Theorem 4.10b, Page 280) or Marden (1966, Page 2) for a general

and modern statement of this theorem. Because I will apply it only to polynomials, I

only need the following, more restrictive version of the theorem, where the term �Jordan

curve� refers to a non-self-intersecting closed curve in the complex plane, and where the

subscripts �b� and �s� stand respectively for �big� and �small�:37

Theorem 1 (Rouché, 1862): Let J be a Jordan curve, Pb(z) ∈ C[z], and Ps(z) ∈ C[z].

If ∀z ∈ J , |Pb(z)| > |Ps(z)|, then Pb(z) +Ps(z) and Pb(z) have the same number of roots

inside J (counting multiplicity).

37Throughout the Appendix, C[z] denotes the set of polynomials in z with complex coe�cients.
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Proof : See Henrici (1988, Page 280) or Marden (1966, Page 3). �

I apply Rouché's theorem to J = C, Pb(z) = Q(z)zmax(0,h−2), and Ps(z) = φzmax(0,2−h)

(with, thus, Pb(z) + Ps(z) = P (z)). For any |φ| < φ := minz̃∈C |Q (z̃)| and any z ∈ C, we
have ∣∣Q(z)zmax(0,h−2)∣∣ = |Q(z)| ≥ min

z̃∈C
|Q (z̃)| = φ > |φ| =

∣∣φzmax(0,2−h)∣∣ .
So, Rouché's theorem implies that P (z) has the same number of roots inside C as

Q(z)zmax(0,h−2). The latter polynomial has exactly max(1, h − 1) roots inside C, since
Q(z) has exactly one root inside C.38 Therefore, p = max(1, h− 1) < max(2, h) = ν, and

we get S(φ, h) = M for any h ∈ Z.

Point (b). To prove Point (b), I switch Pb(z) and Ps(z): i.e., I apply Rouché's theorem

to J = C, Pb(z) = φzmax(0,2−h), and Ps(z) = Q(z)zmax(0,h−2). For any |φ| > φ̄ :=

maxz̃∈C |Q (z̃)| and any z ∈ C, we have∣∣φzmax(0,2−h)∣∣ = |φ| > φ̄ = max
z̃∈C
|Q (z̃)| ≥ |Q(z)| =

∣∣Q(z)zmax(0,h−2)∣∣ .
So, Rouché's theorem implies that P (z) has the same number of roots inside C as

φzmax(0,2−h). The latter polynomial has exactly max(0, 2 − h) roots inside C; so, p =

max(0, 2− h). Since ν = max(2, h), we get: (i) if h ≤ −1, then p > ν and S(φ, h) = E;

(ii) if h = 0, then p = ν and S(φ, h) = D; and (iii) if h ≥ 1, then p < ν and S(φ, h) = M .

Point (c). For h ≥ 2, we have ν = h and

P (z) = Q(z)zh−2 + φ.

Let zo denote the root of Q(z) in (1,+∞), with the subscript �o� standing for �outside

C.� Consider a Jordan curve Jo surrounding zo and not intersecting nor surrounding

C. I apply Rouché's theorem to J = Jo, Pb(z) = Q(z)zh−2, and Ps(z) = φ. For any

|φ| ∈ (φ, φ̄), any

h ≥ h̄ := 2 + max

{
0,

⌈
log
(
φ̄
)
− log (minz̃∈Jo |Q (z̃)|)
log (minz̃∈Jo |z̃|)

⌉}
,

and any z ∈ Jo, we have

∣∣Q(z)zh−2
∣∣ ≥ min

z̃∈Jo

∣∣Q (z̃) z̃h−2
∣∣ ≥ (min

z̃∈Jo
|Q (z̃)|

)(
min
z̃∈Jo
|z̃|
)h−2

≥ φ̄ > |φ| ,

38Since Q(0) = βσ/κ > 0, Q(1) = −1 < 0, and limz∈R,z→+∞Q(z) = +∞, Q(z) has one root in (0, 1)
and another in (1,+∞).
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where the last but one inequality follows from the de�nition of h̄. So, Rouché's theorem

implies that P (z) has the same number of roots inside Jo as Q(z)zh−2. The latter

polynomial has exactly one root inside Jo, which is zo. Therefore, P (z) has also exactly

one root inside Jo, and hence at least one root outside C. Since the degree of P (z) is h,

we thus get p ≤ h − 1 < h = ν, and consequently S(φ, h) = M for any |φ| ∈ (φ, φ̄) and

any h ≥ h̄.

Point (d). For h ≤ 2, we have ν = 2 and

P (z) = Q(z) + φz2−h.

I proceed in four steps. In the �rst step, I show that for any given |φ| ∈ (φ, φ̄), all but one

root of P (z) converge uniformly to C as h→ −∞. I get this result by applying Rouché's

theorem twice. Consider an arbitrary ε ∈ (0, 1 − zi), where zi denotes the root of Q(z)

in (0, 1), with the subscript �i� standing for �inside C.� For any r ∈ R+, let Cr denote

the circle of radius r centered at the origin of the complex plane (so that in particular

C1 = C). I �rst apply Rouché's theorem to J = C1−ε, Pb(z) = Q(z), and Ps(z) = φz2−h.

For any |φ| ∈ (φ, φ̄), any

h ≤ h1−ε := 2 + min

{
0,

⌊
log
(
minz̃∈C1−ε |Q (z̃)|

)
− log

(
φ̄
)

− log (1− ε)

⌋}
,

and any z ∈ C1−ε, we have

|Q(z)| ≥ min
z̃∈C1−ε

|Q (z̃)| ≥ φ̄ (1− ε)2−h > |φ| (1− ε)2−h =
∣∣φz2−h∣∣ ,

where the second inequality follows from the de�nition of h1−ε. So, Rouché's theorem

implies that P (z) has the same number of roots inside C1−ε asQ(z). The latter polynomial

has exactly one root inside C1−ε, which is zi. Therefore, P (z) has also exactly one root

inside C1−ε for any |φ| ∈ (φ, φ̄) and any h ≤ h1−ε.

I then apply Rouché's theorem to J = C1+ε, Pb(z) = φz2−h, and Ps(z) = Q(z). For any

|φ| ∈ (φ, φ̄), any

h ≤ h1+ε := 2 + min

{
0,

⌊
log
(
φ
)
− log

(
maxz̃∈C1+ε |Q (z̃)|

)
log (1 + ε)

⌋}
,

and any z ∈ C1+ε, we have∣∣φz2−h∣∣ = |φ| (1 + ε)2−h > φ (1 + ε)2−h ≥ max
z̃∈C1+ε

|Q (z̃)| ≥ |Q(z)| ,

where the last but one inequality follows from the de�nition of h1+ε. So, Rouché's theorem

implies that P (z) has the same number of roots inside C1+ε as φz2−h. Therefore, P (z) has
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exactly 2− h roots inside C1+ε for any h ≤ h1+ε. Since the degree of P (z) is 2− h when

h ≤ 0, we eventually get that for any |φ| ∈ (φ, φ̄) and any h ≤ min
(
0, h1−ε, h1+ε

)
, all but

one root of P (z) lie between C1−ε and C1+ε. We conclude that for any given |φ| ∈ (φ, φ̄),

all but one root of P (z) converge uniformly to C as h→ −∞.

In the second step, I show that for any given |φ| ∈ (φ, φ̄), the roots of P (z) uniformly

converging to C as h → −∞ converge in distribution to the uniform distribution on C.
This result is a direct consequence of the following theorem (stated but not proved in

Marden, 1966, Page 193):

Theorem 2 (Erd®s and Turán, 1950): Let P̃ (z) =
∑d

k=0 p̃kz
k ∈ C[z] with p̃0p̃d 6= 0.

Let ϕk ∈ [0, 2π) for 1 ≤ k ≤ d denote the angular coordinates of the roots of P̃ (z). For

any 0 ≤ α < ᾱ ≤ 2π,

∣∣∣∣# {k ∈ {1, ..., d}|α ≤ ϕk < ᾱ} −
(
ᾱ− α

2π

)
d

∣∣∣∣ ≤ 16

√√√√d log

(
1√
|p̃0p̃d|

d∑
k=0

|p̃k|

)
.

Proof : See Erd®s and Turán (1950). �

I apply this theorem to P̃ (z) = P (z). For P̃ (z) = P (z) and h ≤ −1, we have

1√
|p̃0p̃d|

d∑
k=0

|p̃k| =
[
1 + |φ|+ 2 (1 + β)

σ

κ

]√ κ

βσ |φ|
.

So, the Erd®s-Turán theorem, combined with the result of the previous step, straight-

forwardly implies that all but one root of P (z) uniformly converge in distribution to the

uniform distribution on C as h→ −∞, for any given |φ| ∈ (φ, φ̄).

In the third step, I show that the number of roots of P (z) inside C grows unboundedly

as h → −∞, for any given |φ| ∈ (φ, φ̄). Since |φ| > φ, there exists an arc A of C such

that ∀z ∈ A, |φ| > |Q(z)|. For any r ∈ R+, let Ar denote the image of A under the

homothety whose center is the origin of the complex plane and whose ratio is r (so that

in particular A1 = A). By continuity, there exists ε ∈ (0, 1) such that |φ| > |Q(z)| for all
z on the Jordan curve J1+ε made of A, A1+ε, and the two radial line segments joining

the endpoints of A and A1+ε (see Figure 9). I apply Rouché's theorem to J = J1+ε,

Pb(z) = φz2−h, and Ps(z) = Q(z). For any h ≤ 2 and any z ∈ J1+ε, we have∣∣φz2−h∣∣ ≥ |φ| > |Q(z)| .
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So, Rouché's theorem implies that P (z) has the same number of roots inside J1+ε as

φz2−h. Therefore, P (z) has no roots inside J1+ε for any h ≤ 2. Using the results of the

�rst two steps, we get that the number of roots of P (z) inside the Jordan curve J1−ε

made of A1−ε, A, and the two radial line segments joining the endpoints of A1−ε and A,
grows unboundedly as h → −∞. As a result, p grows unboundedly as h → −∞. Thus,

there exists h (|φ|) such that p > 2 = ν and S(φ, h) = E for all h ≤ h (|φ|).

Figure 9: Roots of P (z) as h→ −∞
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In the fourth step, I just note that for any ε ∈
(
0, φ̄− φ

)
and any |φ| ∈ (φ+ ε, φ̄), there

exists, by continuity, `(ε) > 0 such that the arc A can be chosen of length higher than

`(ε). As a result, h (|φ|) can be chosen a bounded function of |φ| for |φ| ∈ (φ+ ε, φ̄).

Determination of φ and φ̄. For any z ∈ C, we have

|Q(z)| = σ

κ

∣∣∣β − (1 + β +
κ

σ

)
z + z2

∣∣∣ ≤ σ

κ

[
β +

(
1 + β +

κ

σ

)
|z|+ |z|2

]
= 1+2 (1 + β)

σ

κ
,

with equality only for z = −1. Therefore, argmaxz∈C |Q(z)| = {−1} and

φ̄ := max
z∈C
|Q(z)| = |Q(−1)| = 1 + 2 (1 + β)

σ

κ
.

For any z = a+ ib ∈ C, where (a, b) ∈ [−1, 1]2 and a2 + b2 = 1, some simple algebra leads

to |Q(z)|2 = (σ/κ)2T (a), where

T (a) := 4βa2 − 2 (1 + β)
(

1 + β +
κ

σ

)
a+

[
(1− β)2 +

(
1 + β +

κ

σ

)2]
.

For any a ∈ [−1, 1], we have T ′(a) ≤ T ′(1) = −2(1− β)2 − 2(1 + β)κ/σ < 0. So, T (a) is

strictly decreasing in a over [−1, 1]. Therefore, argmina∈[−1,1] T (a) = {1}, argminz∈C |Q(z)| =
{1}, and

φ := min
z∈C
|Q(z)| = |Q(1)| = 1.
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Online Appendix

This Online Appendix contains the proofs of Propositions 2-8 and Lemma 1 (these proofs

are not in the Appendix of the paper because they do not bring any substantial new

insight, compared to their brief discussion in the main text and/or to the proof of Propo-

sition 1 in the Appendix of the paper). This Online Appendix also contains some �gures

that are brie�y discussed but not shown in the main text (mostly because they are very

similar to other �gures shown in the main text). Finally, it contains a detailed description

of the methodology I use to apply my general results to MMB models.

A.1 Proof of Proposition 2

Consider an arbitrary, �xed h ∈ Z, and the corresponding �xed ν. Recall that determi-

nacy obtains if and only if p = ν. The proof of Point (a) of Proposition 1 in the Appendix

of the paper establishes that ∀φ ∈ (−φ, φ), p = ν− 1. So, as φ decreases from −φ to −φ̄,
we need p to change by an odd number in order to get determinacy, i.e. we need a real

root of P (z) to cross the unit circle, which can only happen if φ reaches a value such that

P (1) = 0 or P (−1) = 0. However, it is easy to check that P (1) = 0 if and only if φ = φ,

and that P (−1) = 0 only if |φ| = φ̄. So, ∀φ ∈ (−φ̄,−φ), P (1) 6= 0 and P (−1) 6= 0, and

hence S(φ, h) 6= D.

A.2 Proof of Proposition 3

Proposition 1 straightforwardly implies that the Taylor principle is necessary for determi-

nacy for any h ∈ Z. To show that it is locally su�cient for determinacy if and only if h <

h1, I rewrite P (z) as a function of two variables: P̃ (φ, z) := Q(z)zmax(0,h−2)+φzmax(0,2−h),

where (φ, z) ∈ R× C. Simple algebra leads to P̃ (1, 1) = 0 and

∂P̃

∂z
(1, 1) = − (h− h1) ,

where h1 := 2−Q′(1)/Q(1) = 1+(1−β)σ/κ. The expression obtained for ∂P̃ /∂z(1, 1) is

generically non-zero (it can be zero only if h1 is an integer, and I ignore this zero-measure

case). So, one root of the polynomial P̃ (1, z) is 1, and this root is of multiplicity one. The

implicit-function theorem implies the existence of a continuously di�erentiable function

φ 7→ Z(φ) such that one real root of P (z) can be written as Z(φ) in the neighborhood of
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φ = 1, with Z(1) = 1 and

Z ′(1) =
−∂P̃

∂φ
(1, 1)

∂P̃
∂z

(1, 1)
=

1

h− h1
.

This root of P (z) crosses C at point 1 as φ goes through 1. It is the only root that

crosses C as φ goes through 1. Indeed, any root z ∈ C having this property must satisfy

P̃ (1, z) = 0, which implies |Q(z)| = 1 and hence z = 1 (since minz̃∈C |Q(z̃)| = 1 and

argminz̃∈C |Q(z̃)| = {1}, as shown in the Appendix of the paper).

For any h < h1, we have Z
′(1) < 0, and therefore the root of P (z) goes from outside to

inside C as φ goes from below 1 to above 1. So, the number p of roots of P (z) inside C
increases by exactly one as φ goes from below 1 to above 1. We know from the Appendix

of the paper that this number is p = max(1, h − 1) = ν − 1 for φ just below φ = 1.

Therefore, we have p = max(2, h) = ν for φ just above 1. As a result, S(φ, h) changes

from M to D as φ goes from below 1 to above 1. Thus, the Taylor principle is locally

su�cient for determinacy for any h < h1.

Alternatively, for any h > h1, we have Z ′(1) > 0, and therefore the root of P (z) goes

this time from inside to outside C as φ goes from below 1 to above 1. So, p decreases by

exactly one as φ goes from below 1 to above 1. Again, we know from the Appendix of

the paper that p = ν − 1 for φ just below φ = 1. Therefore, we have p = ν − 2 for φ

just above 1. As a result, S(φ, h) remains equal to M as φ goes from below 1 to above

1. Thus, for any h > h1, the Taylor principle is not locally su�cient for determinacy.

A.3 Proof of Proposition 4

Under Rule 1 with φ 6= 0, we have ν = max(2, h) and P (z) = Q(z)zmax(0,h−2) +

φzmax(0,2−h). Under Rule 2 with φ 6= 0, the number of non-predetermined variables is

still ν = max(2, h), since the new terms in the rule are past (as opposed to expected

future) values of the interest rate. The characteristic polynomial of the dynamic system

is the same as the characteristic polynomial of the corresponding perfect-foresight system σ(1− L) 1 −L
L β−L

κ
0

0 −φL−h 1−ρL
1−ρ

 yt
πt
it

 = 0.

Using a standard result in time-series analysis (see, e.g., Hamilton, 1994, Proposition

10.1, Page 259), I get that there exists k ∈ Z such that P (z), the reciprocal polynomial
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of this characteristic polynomial, is

P (z) = zk det

 σ(1− z) 1 −z
z β−z

κ
0

0 −φz−h 1−ρz
1−ρ

 = zk
[
Q(z)

1− ρz
1− ρ

+ φz2−h
]
.

As a reciprocal polynomial, P (z) is such that P (0) 6= 0; therefore, we get k = max(0, h−
2), and thus P (z) = [Q(z)(1 − ρz)/(1 − ρ)]zmax(0,h−2) + φzmax(0,2−h) (except in the zero-

measure case in which (φ, h) = (−βσ/κ, 2)). So, Propositions 1-3 still hold for Rule 2

instead of Rule 1, if Q(z) is replaced by Q̃(z) := Q(z)(1−ρz)/(1−ρ) in these propositions.

Since argminz∈C |Q(z)| = {1} (as shown in the Appendix of the paper) and ρ ∈ (0, 1),

we have argminz∈C |Q̃(z)| = {1}; therefore, φ̃ := minz∈C |Q̃(z)| = |Q̃(1)| = |Q(1)| = φ.

Similarly, since argmaxz∈C |Q(z)| = {−1} (as shown in the Appendix of the paper) and

ρ ∈ (0, 1), we have argmaxz∈C |Q̃(z)| = {−1}; therefore, ˜̄φ := maxz∈C |Q̃(z)| = |Q̃(−1)| =
[(1 + ρ)/(1 − ρ)]|Q(−1)| = [(1 + ρ)/(1 − ρ)]φ̄. Finally, h̃1 := 2 − Q̃′(1)/Q̃(1) = 2 −
Q′(1)/Q(1) + ρ/(1− ρ) = h1 + ρ/(1− ρ).

A.4 Proof of Lemma 1

I start with the case of a peg (φ = 0). In this case, the dynamic system boils down to

Et{∆(L−1)A(L)Xt} = 0. The characteristic polynomial of this system is the same as

the characteristic polynomial of the corresponding perfect-foresight system. The latter

system is A(L)Xt = 0. Since det[A(0)] 6= 0, I can use the same standard result in time-

series analysis as in Online Appendix A.3, and I get that P (z), the reciprocal polynomial

of this characteristic polynomial, is equal to Q(z) := det[A(z)].

Since det[A(0)] 6= 0, the dynamic system can be rewritten as Et{∆(L−1)Ã(L)X̃t} = 0,

where Ã(z) := A(z)[A(0)]−1 and X̃t := A(0)Xt. Let X̃j,t denote the jth element of

X̃t for j ∈ {1, ..., n}. The non-predetermined variables of the system are the variables

Et{X̃j,t+kj} for all j ∈ {1, ..., n} such that δj ≥ 1 and all kj ∈ {0, ..., δj − 1}. Their

number, ν, is equal to δ :=
∑n

j=1 δj.

I now turn to the case in which φ 6= 0. In this case, the characteristic polynomial of the

dynamic system is still the same as the characteristic polynomial of the corresponding

perfect-foresight system, but the latter system is now[
A(L) L−γB(L)

−φL−hV(L) 1

] [
Xt

it

]
= 0.

Using the same standard result in time-series analysis as in Online Appendix A.3, I get

that there exists k ∈ Z such that P (z), the reciprocal polynomial of the characteristic
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polynomial, is

P (z) = zk det

[
A(z) z−γB(z)

−φz−hV(z) 1

]
.

Using the Laplace expansion and the notations introduced in the main text, I rewrite

P (z) as P (z) = zk{det[A(z)] − φz−γ−hW (z)} = zk[Q(z) + φzm−hR(z)]. As a reciprocal

polynomial, P (z) is such that P (0) 6= 0; moreover, we have Q(0) 6= 0 and R(0) 6=
0; as a consequence, we get k = max(0, h − m), and thus P (z) = Q(z)zmax(0,h−m) +

φR(z)zmax(0,m−h) (except in the zero-measure case in which (φ, h) = (−Q(0)/R(0),m)).

The number of non-predetermined variables, ν, is equal to δ when h is lower than or

equal to a certain threshold, and it increases one-for-one with h when h is higher than

this threshold. This threshold is equal to the highest value of h for which P (0) depends

on Q(0), i.e. for which the most forward variable in the dynamic system is the same as

under a peg (except in the zero-measure case in which φ = −Q(0)/R(0)). This value is

m, and thus ν = δ + max(0, h−m).

A.5 Proof of Proposition 5

The proof of Proposition 5 is essentially a generalization of the proof of Proposition 1,

using this time P (z) = Q(z)zmax(0,h−m) + φR(z)zmax(0,m−h) and ν = δ + max(0, h −m)

(as stated in Lemma 1).

Point (a). I apply Rouché's theorem to J = C, Pb(z) = Q(z)zmax(0,h−m), and Ps(z) =

φR(z)zmax(0,m−h). For any |φ| < φ and any z ∈ C, we have

∣∣Q(z)zmax(0,h−m)
∣∣ = |Q(z)| ≥ min

z̃∈C

∣∣∣∣Q (z̃)

R (z̃)

∣∣∣∣ |R(z)| = φ |R(z)| > |φR(z)| =
∣∣φR(z)zmax(0,m−h)∣∣ .

So, Rouché's theorem implies that P (z) has the same number of roots inside C as

Q(z)zmax(0,h−m), i.e. that p = q + max(0, h − m). Since ν = δ + max(0, h − m), we

get ν − p = δ − q = dpeg, and hence S(φ, h) = Speg, for any |φ| < φ and any h ∈ Z.

Point (b). I apply Rouché's theorem to J = C, Pb(z) = φR(z)zmax(0,m−h), and Ps(z) =

Q(z)zmax(0,h−m). For any |φ| > φ̄ and any z ∈ C, we have∣∣φR(z)zmax(0,m−h)∣∣ = |φR(z)| > φ̄ |R(z)| = max
z̃∈C

∣∣∣∣Q (z̃)

R (z̃)

∣∣∣∣ |R(z)| ≥ |Q(z)| =
∣∣Q(z)zmax(0,h−m)

∣∣ .
So, Rouché's theorem implies that P (z) has the same number of roots inside C as

φR(z)zmax(0,m−h), i.e. that p = r + max(0,m − h). Since ν = δ + max(0, h − m),

we get, for any |φ| > φ̄: (i) if h ≤ h∗− 1, then p > ν and S(φ, h) = E; (ii) if h = h∗, then

p = ν and S(φ, h) = D; and (iii) if h ≥ h∗ + 1, then p < ν and S(φ, h) = M .
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Points (d)(i) and (d)(ii). For h ≤ m, we have ν = δ and P (z) = Q(z) + φR(z)zm−h.

I proceed in four steps.

In the �rst step, I show that for any given |φ| ∈ (φ, φ̄), all but q+deg(R)−r roots of P (z)

converge uniformly to C as h → −∞.1 I get this result by applying Rouché's theorem

twice. Since Q(z) and R(z) have no roots exactly on C, I can consider an arbitrary

ε ∈ (0, 1) such that neither Q(z) nor R(z) has any root inside the annulus whose borders

are C1−ε and C1+ε (where again, for any r ∈ R+, Cr denotes the circle of radius r centered
at the origin of the complex plane).

I �rst apply Rouché's theorem to J = C1−ε, Pb(z) = Q(z), and Ps(z) = φR(z)zm−h. For

any |φ| ∈ (φ, φ̄), any

h ≤ h1−ε := m+ min

{
0,

⌊
log
(
minz̃∈C1−ε |Q (z̃)|

)
− log

(
φ̄maxz̃∈C1−ε |R (z̃)|

)
− log (1− ε)

⌋}
,

and any z ∈ C1−ε, we have

|Q(z)| ≥ min
z̃∈C1−ε

|Q (z̃)| ≥ φ̄ max
z̃∈C1−ε

|R (z̃)| (1− ε)m−h ≥ φ̄
∣∣R(z)zm−h

∣∣ > ∣∣φR(z)zm−h
∣∣ ,

where the second inequality follows from the de�nition of h1−ε. So, Rouché's theorem

implies that P (z) has the same number of roots inside C1−ε as Q(z). Therefore, P (z) has

also exactly q roots inside C1−ε for any |φ| ∈ (φ, φ̄) and any h ≤ h1−ε.

I then apply Rouché's theorem to J = C1+ε, Pb(z) = φR(z)zm−h, and Ps(z) = Q(z). For

any |φ| ∈ (φ, φ̄), any

h ≤ h1+ε := m+ min

{
0,

⌊
log
(
φminz̃∈C1+ε |R (z̃)|

)
− log

(
maxz̃∈C1+ε |Q (z̃)|

)
log (1 + ε)

⌋}
,

and any z ∈ C1+ε, we have∣∣φR(z)zm−h
∣∣ = |φR(z)| (1 + ε)m−h > φ min

z̃∈C1+ε
|R (z̃)| (1 + ε)m−h ≥ max

z̃∈C1+ε
|Q (z̃)| ≥ |Q(z)| ,

where the last but one inequality follows from the de�nition of h1+ε. So, Rouché's theorem

implies that P (z) has the same number of roots inside C1+ε as φR(z)zm−h. Therefore,

P (z) has exactly r+m−h roots inside C1+ε for any h ≤ h1+ε. As a consequence, for any

|φ| ∈ (φ, φ̄) and any h ≤ min
(
h1−ε, h1+ε

)
, P (z) has exactly r + m − h − q roots inside

the annulus whose borders are C1−ε and C1+ε. Now, the degree of P (z) is deg(R) +m−h
when h ≤ m + deg(R) − deg(Q). So, we eventually get that for any |φ| ∈ (φ, φ̄) and

any h ≤ min
[
h1−ε, h1+ε,m+ deg(R)− deg(Q)

]
, all but q + deg(R)− r roots of P (z) lie

1Throughout the Online Appendix, for any T (z) ∈ R[z], deg(T ) denotes the degree of T (z).
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between C1−ε and C1+ε. We conclude that for any given |φ| ∈ (φ, φ̄), all but q+deg(R)−r
roots of P (z) converge uniformly to C as h→ −∞.

In the second step, I show that for any given |φ| ∈ (φ, φ̄), the roots of P (z) uniformly

converging to C as h → −∞ converge in distribution to the uniform distribution on C.
This result is a direct consequence of the Erd®s-Turán theorem (stated in the Appendix

of the paper). Applying this theorem to P̃ (z) = P (z), and using the result of the previous

step, I thus get that all but q+deg(R)−r roots of P (z) uniformly converge in distribution

to the uniform distribution on C as h→ −∞, for any given |φ| ∈ (φ, φ̄).

In the third step, I show that the number of roots of P (z) inside C grows unboundedly

as h → −∞, for any given |φ| ∈ (φ, φ̄). Since |φ| > φ, there exists an arc A of C such

that ∀z ∈ A, |φR(z)| > |Q(z)|. For any r ∈ R+, let Ar denote the image of A under the

homothety whose center is the origin of the complex plane and whose ratio is r (so that

in particular A1 = A). By continuity, there exists ε ∈ (0, 1) such that |φR(z)| > |Q(z)|
for all z on the Jordan curve J1+ε made of A, A1+ε, and the two radial line segments

joining the endpoints of A and A1+ε (see Figure 9 in the Appendix of the paper). I apply

Rouché's theorem to J = J1+ε, Pb(z) = φR(z)zm−h, and Ps(z) = Q(z). For any h ≤ m

and any z ∈ J1+ε, we have ∣∣φR(z)zm−h
∣∣ ≥ |φR(z)| > |Q(z)| .

So, Rouché's theorem implies that P (z) has the same number of roots inside J1+ε as

φR(z)zm−h. Therefore, P (z) has at most deg(R) roots inside J1+ε for any h ≤ m.

(Figure 9 in the Appendix of the paper represents the case in which P (z) has no roots

inside J1+ε; we necessarily get this case if ε is su�ciently small.) Using the results of

the �rst two steps, we get that the number of roots of P (z) inside the Jordan curve J1−ε

made of A1−ε, A, and the two radial line segments joining the endpoints of A1−ε and A,
grows unboundedly as h → −∞. As a result, p grows unboundedly as h → −∞. Thus,

there exists h (|φ|) such that p > δ = ν and S(φ, h) = E for all h ≤ h (|φ|).

In the fourth step, I just note that for any ε ∈
(
0, φ̄− φ

)
and any |φ| ∈ (φ+ ε, φ̄), there

exists, by continuity, `(ε) > 0 such that the arc A can be chosen of length higher than

`(ε). As a result, h (|φ|) can be chosen a bounded function of |φ| for |φ| ∈ (φ+ ε, φ̄).

Points (c)(i) and (c)(ii). For h ≥ m, we have ν = δ + h−m and P (z) = Q(z)zh−m +

φR(z). I follow the same four steps as in the proof of Points (d)(i) and (d)(ii) above,

with some variants.

In the �rst step, I show that for any given |φ| ∈ (φ, φ̄), all but r+deg(Q)−q roots of P (z)
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converge uniformly to C as h → +∞. I get this result by applying Rouché's theorem

twice. Since Q(z) and R(z) have no roots exactly on C, I can consider an arbitrary

ε ∈ (0, 1) such that neither Q(z) nor R(z) has any root inside the annulus whose borders

are C1−ε and C1+ε.

I �rst apply Rouché's theorem to J = C1−ε, Pb(z) = φR(z), and Ps(z) = Q(z)zh−m. For

any |φ| ∈ (φ, φ̄), any

h ≥ h̄1−ε := m+ max

{
0,

⌈
log
(
maxz̃∈C1−ε |Q (z̃)|

)
− log

(
φminz̃∈C1−ε |R (z̃)|

)
− log (1− ε)

⌉}
,

and any z ∈ C1−ε, we have

|φR(z)| > φ min
z̃∈C1−ε

|R (z̃)| ≥ max
z̃∈C1−ε

|Q (z̃)| (1− ε)h−m ≥
∣∣Q(z)zh−m

∣∣ ,
where the second inequality follows from the de�nition of h̄1−ε. So, Rouché's theorem

implies that P (z) has the same number of roots inside C1−ε as φR(z). Therefore, P (z)

has also exactly r roots inside C1−ε for any |φ| ∈ (φ, φ̄) and any h ≥ h̄1−ε.

I then apply Rouché's theorem to J = C1+ε, Pb(z) = Q(z)zh−m, and Ps(z) = φR(z). For

any |φ| ∈ (φ, φ̄), any

h ≥ h̄1+ε := m+ max

{
0,

⌈
log
(
φ̄maxz̃∈C1+ε |R (z̃)|

)
− log

(
minz̃∈C1+ε |Q (z̃)|

)
log (1 + ε)

⌉}
,

and any z ∈ C1+ε, we have∣∣Q(z)zh−m
∣∣ = |Q(z)| (1 + ε)h−m ≥ min

z̃∈C1+ε
|Q (z̃)| (1 + ε)h−m ≥ φ̄ max

z̃∈C1+ε
|R (z̃)| > |φR(z)| ,

where the last but one inequality follows from the de�nition of h̄1+ε. So, Rouché's theorem

implies that P (z) has the same number of roots inside C1+ε as Q(z)zh−m. Therefore, P (z)

has exactly q + h − m roots inside C1+ε for any h ≥ h̄1+ε. As a consequence, for any

|φ| ∈ (φ, φ̄) and any h ≥ max
(
h̄1−ε, h̄1+ε

)
, P (z) has exactly q + h −m − r roots inside

the annulus whose borders are C1−ε and C1+ε. Now, the degree of P (z) is deg(Q) +h−m
when h ≥ m + deg(R) − deg(Q). So, we eventually get that for any |φ| ∈ (φ, φ̄) and

any h ≥ max
[
h̄1−ε, h̄1+ε,m+ deg(R)− deg(Q)

]
, all but r + deg(Q)− q roots of P (z) lie

between C1−ε and C1+ε. We conclude that for any given |φ| ∈ (φ, φ̄), all but r+deg(Q)−q
roots of P (z) converge uniformly to C as h→ +∞.

In the second step, I show that for any given |φ| ∈ (φ, φ̄), the roots of P (z) uniformly

converging to C as h → +∞ converge in distribution to the uniform distribution on C.
This result is, again, a direct consequence of the Erd®s-Turán theorem (stated in the
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Appendix of the paper). Applying this theorem to P̃ (z) = P (z), and using the result of

the previous step, I thus get that all but r+ deg(Q)− q roots of P (z) uniformly converge

in distribution to the uniform distribution on C as h→ +∞, for any given |φ| ∈ (φ, φ̄).

In the third step, I show that the ratio p/ν is lower than 1 as h → +∞, for any given

|φ| ∈ (φ, φ̄). Since |φ| > φ, there exists an arc A of C such that ∀z ∈ A, |φR(z)| > |Q(z)|.
By continuity, there exists ε ∈ (0, 1) such that |φR(z)| > |Q(z)| for all z on the Jordan

curve J1−ε (de�ned above and represented in Figure A.1). I apply Rouché's theorem to

J = J1−ε, Pb(z) = φR(z), and Ps(z) = Q(z)zh−m. For any h ≥ m and any z ∈ J1−ε, we

have

|φR(z)| > |Q(z)| ≥
∣∣Q(z)zh−m

∣∣ .
So, Rouché's theorem implies that P (z) has the same number of roots inside J1−ε as

φR(z). Therefore, P (z) has at most deg(R) roots inside J1−ε for any h ≥ m. (Figure

A.1 represents the case in which P (z) has no roots inside J1−ε; we necessarily get this

case if ε is su�ciently small.)

Figure A.1: Roots of P (z) as h→ +∞
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Using the results of the �rst two steps, we get that the ratio of the number of roots

of P (z) inside the Jordan curve J1+ε (de�ned above and represented in Figure A.1) to

the total number of roots of P (z) converges to `(A)/(2π) as h → +∞, where again `(.)

denotes the standard length operator (i.e., the Lebesgue measure on C). So, as h→ +∞,

the ratio of the number of roots of P (z) outside C to the total number of roots of P (z)

is bounded away from 0; or, equivalently, the ratio of the number of roots of P (z) inside

C to the total number of roots of P (z), i.e. the ratio p/ deg(P ), is bounded away from

1. Since the ratio of the number of non-predetermined variables to the total number of

roots of P (z), i.e. the ratio ν/ deg(P ), converges to 1 as h→ +∞ (given that both ν and

deg(P ) increase one-for-one with h), we eventually get that the ratio p/ν is lower than
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1 as h → +∞. Thus, for any given |φ| ∈ (φ, φ̄), there exists h̄ (|φ|) such that p < ν and

S(φ, h) = M for all h ≥ h̄ (|φ|).

In the fourth step, I just note that for any ε ∈
(
0, φ̄− φ

)
and any |φ| ∈ (φ+ ε, φ̄), there

exists, by continuity, `(ε) > 0 such that the arc A can be chosen of length higher than

`(ε). As a result, h̄ (|φ|) can be chosen a bounded function of |φ| for |φ| ∈ (φ+ ε, φ̄).

Point (c)(iii). For h ≥ m + max[0, deg(R)− deg(Q)], we have ν = δ + h−m, P (z) =

Q(z)zh−m + φR(z), and deg(P ) = deg(Q) + h−m. Consider a Jordan curve Jo (where
the subscript �o� stands for �outside C�) that: (i) lies entirely outside C, (ii) surrounds
the deg(Q) − q roots of Q(z) outside C (if deg(Q) − q ≥ 1), and (iii) does not surround

C. I apply Rouché's theorem to J = Jo, Pb(z) = Q(z)zh−m, and Ps(z) = φR(z). For any

|φ| ∈ (φ, φ̄), any

h ≥ h̄ := m+max

{
0, deg(R)− deg(Q),

⌈
log
(
φ̄maxz̃∈Jo |R (z̃)|

)
− log (minz̃∈Jo |Q (z̃)|)

log (minz̃∈Jo |z̃|)

⌉}
,

and any z ∈ Jo, we have∣∣Q(z)zh−m
∣∣ ≥ min

z̃∈Jo

∣∣Q (z̃) z̃h−m
∣∣ ≥ (min

z̃∈Jo
|Q (z̃)|

)(
min
z̃∈Jo
|z̃|
)h−m

≥ φ̄max
z̃∈Jo
|R (z̃)| > |φR(z)| ,

where the last but one inequality follows from the de�nition of h̄. So, Rouché's theorem

implies that P (z) has the same number of roots inside Jo as Q(z)zh−m. Therefore, P (z)

has exactly deg(Q) − q roots inside Jo, and hence at least deg(Q) − q roots outside C.
We thus get p ≤ deg(P )− [deg(Q)− q] = h−m+ q = ν − (δ− q) = ν − dpeg. Therefore,
if dpeg ≥ 1 (or equivalently if Speg = M), then p < ν and consequently S(φ, h) = M for

any |φ| ∈ (φ, φ̄) and any h ≥ h̄.

Point (d)(iii). For h ≤ m, we have ν = δ and P (z) = Q(z) + φR(z)zm−h. Consider a

Jordan curve Ji (where the subscript �i� stands for �inside C�) that: (i) lies entirely inside

C, and (ii) surrounds the q roots of Q(z) inside C (if q ≥ 1). I apply Rouché's theorem

to J = Ji, Pb(z) = Q(z), and Ps(z) = φR(z)zm−h. For any |φ| ∈ (φ, φ̄), any

h ≤ h := m+ min

{
0,

⌊
log (minz̃∈Ji |Q (z̃)|)− log

(
φ̄maxz̃∈Ji |R (z̃)|

)
− log (maxz̃∈Ji |z̃|)

⌋}
,

and any z ∈ Ji, we have

|Q(z)| ≥ min
z̃∈Ji
|Q (z̃)| ≥ φ̄max

z̃∈Ji
|R (z̃)|

(
max
z̃∈Ji
|z̃|
)m−h

≥ φ̄max
z̃∈Ji

∣∣R (z̃) z̃m−h
∣∣ > ∣∣φR(z)zm−h

∣∣ ,
where the second inequality follows from the de�nition of h. So, Rouché's theorem

implies that P (z) has the same number of roots inside Ji as Q(z). Therefore, P (z) has
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exactly q roots inside Ji, and hence at least q roots inside C. We thus get p ≥ q =

ν − (δ − q) = ν − dpeg. Therefore, if dpeg ≤ −1 (or equivalently if Speg = E), then p > ν

and consequently S(φ, h) = E for any |φ| ∈ (φ, φ̄) and any h ≤ h.

A.6 Proof of Proposition 6

The proof of Proposition 6 is essentially a generalization of the proof of Proposition

2. Consider an arbitrary, �xed h ∈ Z, and the corresponding �xed ν. Recall that

determinacy obtains if and only if p = ν, and hence only if p − ν is even. The proof of

Point (a) in Online Appendix A.5 establishes that ∀φ ∈
(
−φ, φ

)
, p− ν = dpeg; therefore,

∀φ ∈
(
−φ, φ

)
, p− ν has the same parity as dpeg. As φ moves outside

(
−φ, φ

)
, the parity

of p− ν changes if and only if a real root of P (z) crosses the unit circle, that is to say if

and only if φ goes through a value such that P (1) = 0 or P (−1) = 0. It is easy to check

that P (1) = 0 if and only if φ = φ1, and that P (−1) = 0 only if |φ| = φ−1.

Point (a). Suppose that dpeg is even and |φ1| < φ−1 (as stated in this point). If

φ1 > 0, then p − ν is even for all φ ∈
(
−φ, φ1

)
and odd for all φ ∈ (φ1, φ−1); therefore,

∀φ ∈ (φ1, φ−1), S(φ, h) 6= D. Alternatively, if φ1 < 0, then p−ν is even for all φ ∈
(
φ1, φ

)
and odd for all φ ∈ (−φ−1, φ1); therefore, ∀φ ∈ (−φ−1, φ1), S(φ, h) 6= D.

Point (b). Suppose that dpeg is odd and |φ1| < φ−1 (as stated in this point). If φ1 > 0,

then ∀φ ∈ (−φ−1, φ1), p− ν is odd and hence S(φ, h) 6= D. Alternatively, if φ1 < 0, then

∀φ ∈ (φ1, φ−1), p− ν is odd and hence S(φ, h) 6= D.

Point (c). Suppose that dpeg is odd and |φ1| > φ−1 (as stated in this point). Then

∀φ ∈ (−φ−1, φ−1), p− ν is odd and hence S(φ, h) 6= D.

A.7 Proof of Proposition 7

Points (a) and (b). Points (a) and (b)(i) straightforwardly follow from Proposition

5 and the associated Figure 4. Points (b)(ii) and (b)(iii) straightforwardly follow from

Points (a) and (b) of Proposition 6 (with φ1 > 0).

Point (c). The proof of this point is essentially a generalization of the proof of Propo-

sition 3. Suppose that φ1 = φ (as stated in this point). Proposition 5 straightforwardly

implies that the Taylor principle is necessary for determinacy for any dpeg ∈ Z \ {0} and
any h ∈ Z. To show that it is locally su�cient for determinacy if and only if (dpeg = 1

and h < h1) or (dpeg = −1 and h > h1), I rewrite P (z) as a function of two variables:
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P̃ (φ, z) := Q(z)zmax(0,h−m) + φR(z)zmax(0,m−h), where (φ, z) ∈ R × C. Simple algebra

leads to P̃ (φ1, 1) = 0 and
∂P̃

∂z
(φ1, 1) = Q(1) (h− h1) ,

where h1 := m+R′(1)/R(1)−Q′(1)/Q(1). The expression obtained for ∂P̃ /∂z(φ1, 1) is

generically non-zero (it can be zero only if h1 is an integer, and I ignore this zero-measure

case). So, one root of the polynomial P̃ (φ1, z) is 1, and this root is of multiplicity one. The

implicit-function theorem implies the existence of a continuously di�erentiable function

φ 7→ Z(φ) such that one real root of P (z) can be written as Z(φ) in the neighborhood of

φ = φ1, with Z(φ1) = 1 and

Z ′(φ1) =
−∂P̃

∂φ
(φ1, 1)

∂P̃
∂z

(φ1, 1)
=

1

φ1 (h− h1)
.

This root of P (z) crosses C at point 1 as φ goes through φ1. It is the only root

that crosses C as φ goes through φ1. Indeed, any root z ∈ C having this property

must satisfy P̃ (φ1, z) = 0, which implies |Q(z)/R(z)| = φ1 and hence z = 1 (since

minz̃∈C |Q(z̃)/R(z̃)| = φ1 and argminz̃∈C |Q(z̃)/R(z̃)| = {1}).

For any h < h1, we have Z ′(φ1) < 0, and therefore the root of P (z) goes from outside

to inside C as φ goes from below φ1 to above φ1. So, the number p of roots of P (z)

inside C increases by exactly one as φ goes from below φ1 to above φ1. We know from

Online Appendix A.5 that this number is p = q+ max(0, h−m) for φ just below φ = φ1.

We also know from Lemma 1 that ν = δ + max(0, h − m). So, ν − p = δ − q = dpeg

for φ just below φ1, and ν − p = dpeg − 1 for φ just above φ1. Therefore, if dpeg = 1,

then we move from p < ν to p = ν, and hence from S(φ, h) = M to S(φ, h) = D, as

φ goes from below φ1 to above φ1; in this case, the Taylor principle is locally su�cient

for determinacy. Alternatively, if dpeg ≥ 2 (resp. dpeg ≤ 0), then we get p < ν and

S(φ, h) = M (resp. p > ν and S(φ, h) = E) for φ just above φ1, and the Taylor principle

is not locally su�cient for determinacy.

For any h > h1, we have Z
′(φ1) > 0, and therefore the root of P (z) goes this time from

inside to outside C as φ goes from below φ1 to above φ1. So, p decreases by exactly

one as φ goes from below φ1 to above φ1. Again, we know from Online Appendix A.5

that p = q + max(0, h −m) for φ just below φ = φ1, and we know from Lemma 1 that

ν = δ+max(0, h−m). So, we still have ν−p = dpeg for φ just below φ1, but we now have

ν − p = dpeg + 1 for φ just above φ1. Therefore, if dpeg = −1, then we move from p > ν

to p = ν, and hence from S(φ, h) = E to S(φ, h) = D, as φ goes from below φ1 to above

φ1; in this case, the Taylor principle is locally su�cient for determinacy. Alternatively,
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if dpeg ≥ 0 (resp. dpeg ≤ −2), then we get p < ν and S(φ, h) = M (resp. p > ν and

S(φ, h) = E) for φ just above φ1, and the Taylor principle is not locally su�cient for

determinacy.

A.8 Proof of Proposition 8

The proof of Proposition 8 is essentially a generalization of the proof of Proposition 4.

Under Rule (6) with φ 6= 0, as stated in Lemma 1, we have ν = δ + max(0, h −m) and

P (z) = Q(z)zmax(0,h−m) + φR(z)zmax(0,m−h). Under Rule (10) (which requires φ 6= 0),

the number of non-predetermined variables is still ν = δ + max(0, h−m), since the new

terms in the rule are past (as opposed to expected future) values of the policy instrument.

The characteristic polynomial of the dynamic system is the same as the characteristic

polynomial of the corresponding perfect-foresight system[
A(L) L−γB(L)

−φL−hV(L) ρ(L)/ρ(1)

] [
Xt

it

]
= 0.

Using the same standard result in time-series analysis as in Online Appendix A.3, I get

that there exists k ∈ Z such that P (z), the reciprocal polynomial of the characteristic

polynomial, is

P (z) = zk det

[
A(z) z−γB(z)

−φz−hV(z) ρ(z)/ρ(1)

]
.

Using the Laplace expansion and the notations introduced in the main text, I rewrite

P (z) as P (z) = zk{det[A(z)]ρ(z)/ρ(1)−φz−γ−hW (z)} = zk[Q(z)ρ(z)/ρ(1)+φzm−hR(z)].

As a reciprocal polynomial, P (z) is such that P (0) 6= 0; moreover, we have Q(0) 6= 0,

ρ(0) 6= 0, and R(0) 6= 0; as a consequence, we get k = max(0, h −m), and thus P (z) =

[Q(z)ρ(z)/ρ(1)]zmax(0,h−m) + φR(z)zmax(0,m−h) (except in the zero-measure case in which

(φ, h) = (−Q(0)ρ(0)/[R(0)ρ(1)],m)). So, Lemma 1 still holds for Rule (10) instead

of Rule (6), if Q(z) is replaced by Q(z)ρ(z)/ρ(1) in this lemma. As a consequence,

Propositions 5-7 still hold for Rule (10) instead of Rule (6), if in these propositions Q(z)

is replaced by Q̃(z) := Q(z)ρ(z)/ρ(1) and, accordingly, dpeg is replaced by dpeg−dsup and
Speg by S̃(dpeg − dsup).

The replacement of Q(z) by Q̃(z) leaves h∗ := m + r − δ unchanged. Moreover, φ̃1 :=

−Q̃(1)/R(1) = −Q(1)/R(1) = φ1 and φ̃−1 :=
∣∣∣Q̃(−1)/R(−1)

∣∣∣ = |Q(−1)ρ(−1)/[R(−1)

ρ(1)]| = |ρ(−1)/ρ(1)|φ−1. Finally, h̃1 := m+R′(1)/R(1)−Q̃′(1)/Q̃(1) = m+R′(1)/R(1)−
Q′(1)/Q(1)− ρ′(1)/ρ(1) = h1 − ρ′(1)/ρ(1).
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A.9 Counterparts of Figures 5 and 6 for φ < 0

In the main text, Figures 5 and 6 show the determinacy status for some models and some

rules, focusing on φ > 0. In the present Online Appendix, Figures A.2 and A.3 show the

determinacy status for the same models and the same rules, but this time for φ < 0.

Figure A.2: Determinacy status for Models 2-5 and Rule 1 with φ < 0

b D

b M

b E

Figure A.3: Determinacy status for Models 1-2 and Rule (9) with φ < 0

b D

b M

b E

In Figures A.2a, A.2b, A.2d and A.3b, we have no determinacy for all (φ, h) ∈ (−φ̄,−φ)×
Z as a consequence of Points (a) and (b) of Proposition 6 (as Table 2 in the main text
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explains). In Figure A.3a, we have no determinacy for all (φ, h) ∈ (−φ−1,−φ) × Z as a

consequence of Point (c) of Proposition 6 (again, as Table 2 in the main text explains).

A.10 Application to MMB models: Non-regular cases

I make three regularity assumptions in the main text: (i) Q(z) has no roots exactly

on the unit circle C; (ii) similarly, R(z) has no roots exactly on C; and (iii) if 1 ∈
argminz∈C |Q(z)/R(z)|, then argminz∈C |Q(z)/R(z)| = {1}.

In my application to MMB models, I dismiss all model-and-rule combinations such that

either (a) Assumption (i) is not met, or (b) Assumption (ii) is not met, or (c) Assumption

(iii) is not met, or (d) the model has an exogenous monetary policy and is thus inconsistent

with a rule.2 Table A.1 reports which model-and-rule combinations I consider, which ones

I dismiss, and for which reason (a, b, c or d) I dismiss the latter.

Table A.1: Model-and-rule combinations

Rules

1 2 3 & 5 4 & 6

M
o
d
el
s

NK_GS14 (a) (a) (a)

US_MR07 (b) (b) (b)

US_OW98 (b) (b) (b) (b)

US_RE09 (c) (a) (b)

US_RS99 (b) (b) (b) (b)

EA_CW05fm (b) (b) (b) (b)

EA_CW05ta (b) (b) (b) (b)

EA_PV17 (b) (b) (b) (b)

EACZ_GEM03 (a) (a) (a)

FI_AINO16 (d) (d) (d) (d)

All 130 other models

Total number of models 140 140 140 140

Number of models dismissed ( ) 10 9 9 8

Number of models considered ( ) 130 131 131 132

Note: the table reports which model-and-rule combinations I consider (check mark), which ones I dismiss (cross mark),
and for which reason (a, b, c or d) I dismiss the latter. The parameter ρ in the inertial Rules 2, 5 and 6 is set to 0.8.

In practice, the polynomials Q(z) and R(z) that I obtain may have no roots exactly on

C, even when it can be shown that the true polynomials Q(z) and R(z) do have a root

exactly on C. So, I use, as a practical proxy for Case (a) (resp. Case (b)), the case

in which the polynomial Q(z) (resp. R(z)) that I obtain has a root whose modulus is

2Case (d) concerns only one model; this model has an exogenous monetary policy because it is a
model of the Finnish economy within the euro area.
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between 1−10−7 and 1+10−7. Similarly, I use, as a practical proxy for Case (c), the case

in which there exists z̃ ∈ C such that I obtain |Q(1)/R(1)| −minz∈C |Q(z)/R(z)| < 10−7,

|Q (z̃) /R (z̃)| −minz∈C |Q(z)/R(z)| < 10−7 and |z̃ − 1| > 10−1.

A.11 Application to MMB models: Methodology

In this Online Appendix, I outline the methodology I use to apply my general results to

MMB models. The MMB models are coded in Dynare. I write a single Matlab program

that: (i) calls all these Dynare �les under alternative interest-rate rules; (ii) computes

the coe�cient and horizon thresholds φ, φ̄, φ1, φ−1, h
∗ and h1 for each model-and-rule

combination; (iii) checks in di�erent ways that the threshold values obtained are the

correct ones; and (iv) produces the �gures displayed in the main text and in the Online

Appendix.

I start by making a few changes to some of the Dynare �les. These changes serve two

main purposes: to facilitate the search for the steady state under various interest-rate

rules, and to ensure that the foreign interest-rate rule remains invariant in open-economy

models as I modify the domestic interest-rate rule. I provide a detailed description of

these few changes in my Matlab code (in comments).

The Dynare �les include a �user-speci�ed interest-rate rule� of type

it =
∑4

k=1
ρkit−k +

∑4

h=−4
φπhEt{πt+h}+

∑4

h=−4
φyhEt{yt+h},

where it, πt and yt denote the interest rate, the in�ation rate and the output level at date

t, and all coe�cients ρk, φ
π
h and φyh are real numbers to be chosen by the user.3 For any

value of these coe�cients, Dynare gives the eigenvalues of the dynamic system composed

of the structural equations and the interest-rate rule; i.e., it gives the characteristic

polynomial of this system, and hence its reciprocal polynomial P (z). It also gives the

number of non-predetermined variables ν.

For each MMB model, I compute Q(z) and δ by setting all the rule's coe�cients to zero:

under an interest-rate peg (it = 0), we have P (z) = Q(z) and ν = δ.

The computation of R(z) and m depends on the rule considered. For Rule 1, I set all the

rule's coe�cients to zero except φπ−4, for which I consider several alternative values. For

3In addition to in�ation and the output level, the user-speci�ed rule also involves the output gap,
which is de�ned as the output level minus an exogenous term. I abstract from the output gap, as it
a�ects the determinacy status in exactly the same way as the output level.
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each value of φπ−4, Dynare gives me

P (z) = Q(z)zmax(0,−m−4) + φπ−4R(z)zmax(0,m+4).

For all MMB models, I �nd that P (0) does not depend on φπ−4 (when P (z) is normalized

to be monic); so, m+ 4 > 0 and

P (z) = Q(z) + φπ−4R(z)zm+4.

Using two alternative values φa and φb for φ
π
−4, and the corresponding polynomials Pa(z)

and Pb(z), I then compute

R(z)zm+4 =
Pa(z)− Pb(z)

φa − φb
,

from which I get R(z) and m. With Q(z), δ, R(z) and m, I then compute the coe�cient

and horizon thresholds φ, φ̄, φ1, φ−1, h
∗ and h1.

For Rules 3 and 4, I proceed in the same way as for Rule 1 except that I also set φy−4

to φπ−4/3 (for Rule 3) or φy0 to 0.5 (for Rule 4). For the inertial Rules 2, 5 and 6 with

ρ = 0.8, I proceed in the same way as for the non-inertial Rules 1, 3 and 4 respectively,

except that I also set ρ1 to ρ and I multiply φπ−4, φ
y
−4 and φ

y
0 by 1− ρ.4

In the process, there are two di�culties to overcome. The �rst di�culty is that most,

if not all MMB models have autoregressive (AR) exogenous shocks, unlike my generic

model (5). So, the eigenvalues given by Dynare include those coming from the shocks'

AR processes, and the polynomial P (z) given by Dynare is actually my polynomial P (z)

times another polynomial re�ecting these AR processes. This di�culty is easily overcome,

however, because the latter polynomial is in factor of both Q(z) and R(z). So, it does not

a�ect the ratio Q(z)/R(z), nor the di�erence R′(1)/R(1)−Q′(1)/Q(1). As a consequence,

it does not a�ect the coe�cient and horizon thresholds φ, φ̄, φ1, φ−1 and h1. Since the

eigenvalues coming from the shocks' AR processes are �stable,� it does not a�ect r either,

and hence it does not a�ect the horizon threshold h∗. So, to sum up, I do not need to

remove the eigenvalues coming from the shocks' AR processes: I can just ignore them.

The second di�culty is that Dynare computes generalized eigenvalues. The true gener-

alized eigenvalues typically include in�nite eigenvalues (due to singular state-space rep-

resentations, as static equations are included among dynamic equations). In practice,

however, Dynare often gets �nite and very large eigenvalues, instead of in�nite ones. I

4I get m > −4 for all model-and-rule combinations expect the combinations (Model GMP_IMF13,
Rule 3) and (Model GMP_IMF13, Rule 5), for which I get m = −4. For these two combinations, I
consider alternative values for φπ−3 and φy−3, rather than φ

π
−4 and φy−4.
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need to identify these eigenvalues, in order to remove them. In many cases, they are eas-

ily identi�ed, as the order of magnitude of eigenvalue moduli, sorted in ascending order,

jumps from 0 to 15 or more. In some cases, however, especially for large-scale models

with several hundreds of eigenvalues, their identi�cation is more di�cult. I then choose

a cuto� value for the moduli (above which I ignore the eigenvalues) such that the results

are stable and the checks are passed.

I conduct two kinds of checks. First, I get eight alternative measures of Q(z) and R(z),

and I check that the results do not depend on the measure used. More speci�cally, I

consider four alternative pairs of values (φa, φb) for φπ−4, and I thus get four measures

of R(z). For each of these values of R(z), I use two di�erent methods to get Q(z): the

direct method described above, and the indirect method computing Q(z) as

Q(z) = Pa(z)− φaR(z)zm+4,

using a given value φa of φ
π
−4 and the corresponding polynomial Pa(z).

The second kind of check consists in running Dynare for φ just below and just above the

computed values of the thresholds −φ̄, −φ, φ, φ̄, φ1, −φ−1 and φ−1, and for h ranging

from -4 to 4. I check that the degree of indeterminacy ν − p obtained, and the change in

the degree of indeterminacy as φ crosses the threshold considered, are consistent with my

analytical results. The Dynare runs for φ just above φ̄ (resp. just above φ1) also serve

to check the value of h∗ (resp. the value of h1).

A.12 Application to MMB models: Additional distributions

In Section 4 of the paper, which applies my general results to MMB models, the results

essentially take the form of distributions of coe�cient and horizon thresholds across MMB

models. In this Online Appendix, I show some distributions that are brie�y discussed but

not shown in the main text (mostly because they are very similar to other distributions

shown in the main text).

Figure A.4a shows the distribution of HTP types under the inertial Rule 2 (with ρ = 0.8).

As I explain in the main text, if HTP is of type {h|h < h1} under Rule 1 (as is the case

for 96 models), then HTP remains of this type under Rule 2. For the same reason, if HTP

is of type {h|h > h1} under Rule 1 (as is the case for only 2 models), then HTP remains

of this type under Rule 2.5 So, the distribution of HTP types is broadly similar across

5As we move from Rule 1 to Rule 2, the increase in h1 thus widens HTP in the former (96) models,
and narrows HTP in the latter (2) models.
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the two rules. The main change in the distribution of HTP types, as we move from Rule

1 to Rule 2 (i.e. from Figure 7e to Figure A.4a), is that for 10 models HTP is �nite under

Rule 1 and in�nite, of type {h|h < h1}, under Rule 2.6

Figure A.4: Some distributions across MMB models under Rule 2 (131 models)
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66
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Figure A.4b shows the distribution of bh1c under Rule 2, across the 107 models such that

HTP is of type {h|h < h1}. For the 96 models such that HTP is of type {h|h < h1} also
under Rule 1, Proposition 8 implies that bh1c increases by exactly 4 quarters − typically

from 1 to 5 quarters − as we move from Rule 1 to Rule 2. For the 10 models such that

HTP is of type {h|h < h1} only under Rule 2, the mean and median values of bh1c under
Rule 2 are 4.1 and 4 respectively. So, the distribution of bh1c across the 107 models

under Rule 2 (Figure A.4b) looks essentially like the distribution of bh1c across the 96

models under Rule 1 (Figure 7f) shifted to the right by 4 quarters.7

Before I turn to the results obtained under Rules 3-6, let me point out that Rules 4 and

6 are not of type (6). However, as I explain in Subsection 3.8, Propositions 5-7 still hold

for Rules 4 and 6, if Speg and dpeg in these propositions are replaced by the determinacy

status S0 and the degree of indeterminacy d0 obtained for φ = 0, i.e. obtained under

the rule it = (1/2)yt (for Rule 4) or it = ρit−1 + (1 − ρ)(1/2)yt (for Rule 6). Table A.2

reports the distribution of d0 across MMB models for Rules 4 and 6: most of the models

are such that d0 = 1 (and hence S0 = M).

The results obtained under Rules 3-4 (resp. Rules 5-6) are similar to the results obtained

6These 10 models are such that argminz∈C |Q(z)/R(z)| 6= {1} and hence φ1 6= φ under Rule 1, but
argminz∈C |(1− ρz)Q(z)/[(1− ρ)R(z)]| = {1} and hence φ1 = φ under Rule 2.

7There are 107− 96 = 11 more models with HTP = {h|h < h1} under Rule 2 than under Rule 1: the
ten models that I discuss here, plus one model that was not considered under Rule 1 (because it did not
satisfy a regularity condition).
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Table A.2: Distribution of d0 across MMB models for Rules 4 and 6 (140 models)

Value of d0 -1 0 1

Number of models 5 14 121

under Rule 1 (resp. Rule 2), except for h1 (as discussed in the main text). Under Rules

3-4 (Figure A.5), compared to Rule 1 (Figure 7), φ and φ1 are still predominantly close

to 1; φ̄ and φ−1 are still typically very large (although they are low, between 0 and 2, in

a few models again); and h∗ is still 0 for a large majority of models.

Figure A.5: Some distributions across MMB models under Rules 3-4 (131-132 models)
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The distribution of HTP types is broadly the same under Rules 5-6 (Figure A.6a) as under

Rules 3-4 (Figure 8a), although for 17 models (resp. 10 models) HTP is �nite under Rule

3 (resp. Rule 4) and in�nite, of type {h|h < h1}, under Rule 5 (resp. Rule 6). For models

with HTP = {h|h < h1} under Rule 3, replacing the non-inertial Rule 3 with the inertial

Rule 5 increases h1 by ρ/(1 − ρ) (as a consequence of Proposition 8), just like for the

basic NK model. So, for ρ = 0.8, bh1c increases by exactly 4 quarters as we move from

Rule 3 (Figure 8b) to Rule 5 (Figure A.6b). We observe a similar increase in bh1c as we
move from Rule 4 (Figure 8b) to Rule 6 (Figure A.6b), although the latter increase is

not a consequence of Proposition 8.

Figure A.6: Some distributions across MMB models under Rules 5-6 (131-132 models)
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