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1 Introduction

Dynamic rational-expectations models are widely used in macroeconomics. It is well known that

these models can have �sunspot equilibria� in which the economy �uctuates around a steady

state because of self-ful�lling expectations. Since these �uctuations are typically detrimental

to welfare, a natural goal for stabilization policy is to eliminate these equilibria by ensuring

�local-equilibrium determinacy� (i.e. existence and uniqueness of a stationary solution to the

locally log-linearized model).

A large number of papers have thus studied, in various speci�c contexts, the conditions under

which a policy-instrument rule ensures determinacy; that is, in discrete time, the inequality

conditions on the coe�cients of the rule for the resulting dynamic system to satisfy Blanchard

and Kahn's (1980) determinacy conditions. Probably the best known result along these lines is

about the so-called �Taylor principle� for monetary policy. Since Taylor (1993), monetary policy
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is commonly modeled by a simple interest-rate rule; in its simplest version, the Taylor principle

states that the rule should make the interest rate react more than one-for-one to the in�ation

rate (when it reacts only to the in�ation rate). This principle has been found to be necessary,

and sometimes also su�cient, for determinacy in some simple prominent models for di�erent

in�ation horizons in the rule (see, e.g., Woodford, 2003, Chapter 4).

Although some patterns emerge from this literature, no general result has yet been established.

The Taylor principle is a good guide for determinacy in many monetary-policy models, but a poor

one in others (see, e.g., Benhabib et al., 2001, Bilbiie, 2008). For monetary policy as for other

stabilization policies, we lack a general understanding of determinacy outcomes depending on

the model, the variables in the rule, and the coe�cients and time horizons of these variables. We

lack this understanding because the literature has derived determinacy conditions analytically

only in simple models and for simple rules with short horizons. The main di�culty in getting

more general analytical results is that Blanchard and Kahn's (1980) determinacy conditions are

about the roots of the characteristic polynomial of the dynamic system; and these roots depend

on (the coe�cients and horizons of) the policy-instrument rule in a complicated way.

In this paper, I use two complex-analysis theorems to overcome this di�culty and establish

some general, simple, necessary or su�cient conditions for determinacy in dynamic rational-

expectations models. These conditions are directly about the coe�cients and horizons of the

policy-instrument rule, and lead to new principles for stabilization policy.

More speci�cally, I consider a general class of (locally log-linearized) discrete-time in�nite-

horizon rational-expectations models. Throughout most of the paper, I focus on (locally log-

linearized) rules that make the policy instrument react to a single variable (or linear combination

of variables) with coe�cient ϕ ∈ R. The time horizon of this variable is h ∈ Z: the policy instru-
ment reacts to the |h|-period-lagged variable (when h ≤ −1), the current variable (when h = 0),

or the current expectation of the h-period-ahead variable (when h ≥ 1). The determinacy status

of the dynamic system composed of the model and the rule can be either �determinacy� (unique

stationary solution), or �multiplicity� (in�nity of stationary solutions), or �explosiveness� (no

stationary solution). I characterize this determinacy status as a function of the coe�cient ϕ and

the horizon h in the rule, for |ϕ| su�ciently small or large, and/or for |h| su�ciently large.

I distinguish between two cases, depending on whether a regularity condition is met or not. This

regularity condition is only about the model and the variable in the rule; it does not involve the

coe�cient ϕ nor the horizon h of this variable.

When the regularity condition is met, there exists a positive threshold ϕ such that for any |ϕ| < ϕ,

the determinacy status is independent of h and is the same as under a policy-instrument peg

(ϕ = 0). Intuitively, for |ϕ| su�ciently small, the rule does not change the system's dynamics

enough to a�ect the determinacy status. Moreover, there exists a higher threshold ϕ̄ and a

horizon h∗ ∈ Z such that for any |ϕ| > ϕ̄, there is explosiveness if h ≤ h∗ − 1, determinacy if
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h = h∗, and multiplicity if h ≥ h∗+1. Intuitively, for |ϕ| su�ciently large, the rule dominates the

structural equations in the system's dynamics: a su�ciently large weight |ϕ| on outcomes before

(resp. after) horizon h∗ favors exploding (resp. imploding) paths and leads to explosiveness

(resp. multiplicity).

For |ϕ| ∈ (ϕ, ϕ̄), the structural equations do not entirely dominate the rule in the system's

dynamics (since |ϕ| > ϕ), nor does the rule entirely dominate the structural equations (since

|ϕ| < ϕ̄). As |h| → +∞, the roots of the system's characteristic polynomial distribute themselves

between inside and outside the unit circle C of the complex plane in proportion of the share of

C on which the structural equations dominate the rule and the share of C on which the rule

dominates the structural equations. So, as h → −∞ (resp. as h → +∞), we eventually get

more (resp. fewer) roots outside C than non-predetermined variables, and hence explosiveness

(resp. multiplicity), for any given |ϕ| ∈ (ϕ, ϕ̄).

I address the question of whether the set of �determinacy horizons� (i.e. the set of horizons h ∈ Z
such that determinacy obtains for at least one value of ϕ ∈ R) is bounded or not, below or above.

This question matters for the desirability of backward- or forward-looking stabilization policy

(and, in turn, backward-looking stabilization policy matters in the presence of �inside lags� −
as are called recognition, decision, and implementation lags, which delay the reaction of policy

to the state of the economy). The answer depends on whether the model delivers determinacy,

multiplicity, or explosiveness under a policy-instrument peg (ϕ = 0). In the monetary-policy

literature, with the interest rate as the policy instrument, one comes across the three kinds of

models, as I discuss below and as I illustrate in the main text.

For models that deliver determinacy under a peg, the set of determinacy horizons is unbounded

below and above, since determinacy obtains for |ϕ| < ϕ at any horizon. For models that deliver

multiplicity (resp. explosiveness) under a peg, the set of determinacy horizons is bounded above

(resp. below). The reason is that large positive (resp. negative) horizons h do not much �perturb�

the imploding (resp. exploding) equilibrium paths obtained under a peg, as the reaction of the

policy instrument prescribed by the rule on these paths decreases exponentially with |h|; so,
these horizons preserve the determinacy status obtained under a peg if this status is multiplicity

(resp. explosiveness). For these models, the set of determinacy horizons can also be bounded

both below and above; I establish su�cient conditions for this outcome to obtain.

I also study the validity of the Taylor principle as a necessary or su�cient condition for deter-

minacy. I consider Woodford's (2001, 2003) version of the Taylor principle, sometimes called

the long-run Taylor principle, which has a broader scope than the simpler version of the Taylor

principle described above. I provide a formal, general de�nition of this principle, which applies

to any stabilization-policy model and any variable in the rule. I characterize circumstances

under which this principle is (alternatively) irrelevant, not necessary, not su�cient, su�cient,

or locally necessary and su�cient for determinacy.
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When the regularity condition mentioned above is not met, the results are partly modi�ed. As

I discuss and illustrate in the text, this condition is typically not met, for instance, when the

variable in the rule is the �rst di�erence of a variable in the structural equations (e.g. the output

growth rate in the rule and the output level in the structural equations), or when the variable in

the rule is the output level and the long-run Phillips curve is vertical. In these cases, the results

about the determinacy status for |ϕ| > ϕ̄ are changed; those about the determinacy status for

|ϕ| < ϕ̄ and about the set of determinacy horizons are unchanged.

The regularity condition is also typically not met when, conversely, a variable in the structural

equations is the �rst di�erence of the variable in the rule (e.g. the in�ation rate in the structural

equations and the price level in the rule). In that case, the results about the determinacy status

for |ϕ| below or just above ϕ are changed, and so are those about the set of determinacy horizons;

the results about the determinacy status for |ϕ| above a neighborhood of ϕ are unchanged.

I illustrate all these results, obtained under the regularity condition or not, with several simple

monetary-policy examples. The models and calibrations are entirely borrowed from the liter-

ature. Even though the models are not quantitative, it is worth noting that ϕ and ϕ̄ can be,

in these examples, of the same order of magnitude as standard values of ϕ in the literature.

Moreover, the highest determinacy horizon, when it exists, is not higher than 2 periods; the

lowest one, when it exists, is not lower than -1 period (the period being typically a quarter).

Finally, I extend the results to rules involving several variables with di�erent horizons and

coe�cients, one of which is a variable with horizon h and coe�cient ϕ; and to inertial rules, i.e.

rules involving the past values of the policy instrument in addition to a variable with horizon

h and coe�cient ϕ. The extended results show notably that for models delivering multiplicity

under a policy-instrument peg, the set of determinacy horizons can always be made unbounded

below and above with a �superinertial rule,� i.e. a rule that would make the policy instrument

explode over time if the variables set by the private sector were taken out of the rule.

A few remarks may serve to put my contribution in the context of the literature. The paper is,

to my knowledge, the �rst to establish general determinacy conditions about the coe�cients and

horizons of policy-instrument rules. In particular, the concepts of ϕ, ϕ̄, and h∗ are new. The

literature has derived determinacy conditions analytically only in simple models and for simple

rules with short horizons (so that the degree of the characteristic polynomial of the dynamic

system is typically not higher than 3). Early examples of such contributions include Benhabib

et al. (2001), Bullard and Mitra (2002), Carlstrom and Fuerst (2002), and Woodford (2003,

Chapter 4), for horizons between -1 and 1. The two complex-analysis theorems that I use to

establish my general results are those of Rouché (1862) and Erd®s and Turán (1950). Bhattarai

et al. (2014) use a stronger version of Rouché's theorem to derive a su�cient condition for

determinacy in a model with partial price indexation and habit formation in consumption; this

condition, unlike mine, is not directly about the coe�cients and horizons of the rule.
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Some of the results I establish are conditional on whether the model delivers multiplicity, de-

terminacy, or explosiveness under a policy-instrument peg. One comes across the three types

of models in the monetary-policy literature. Standard New Keynesian models typically deliver

multiplicity under an interest-rate peg; this property is emphasized by Cochrane (2011, 2022);

Giannoni and Woodford (2002) and Woodford (2003, Chapter 8) call it the �Sargent-Wallace

property,� after Sargent and Wallace (1975). Older models often deliver explosiveness under an

interest-rate peg; this property is emphasized by Cochrane (2011, 2022), who calls these models

�Old Keynesian.� More recently, models have been developed that can deliver determinacy un-

der an interest-rate peg (and, as a result, can solve some New Keynesian puzzles and paradoxes

at the zero lower bound). Examples include the heterogenous-agents models of Acharya and

Dogra (2020) and Bilbiie (2008, 2021), and the bounded-rationality model of Gabaix (2020).

The policy-instrument rules that I consider may involve any variable set by the private sector

(at any positive or negative time horizon). In my numerical illustrations, I consider notably

in�ation, real output, nominal output, and the price level, all of which are classic variables

in the monetary-policy literature; in particular, Woodford (2003) calls the interest-rate rules

involving the price level �Wicksellian rules,� after Wicksell (1898). Whether the variable(s) in

the rule should be expressed in level or in growth rate is a long-standing issue in the literature

(see, e.g., McCallum, 1999); my general results shed light on the implications of this choice for

determinacy outcomes.

I also consider any type of inertial rules, including ��rst-di�erence rules,� i.e. rules with a

coe�cient of unity on the lagged policy instrument (advocated in, e.g., Levin et al., 1999, and

Levin and Williams, 2003), and �superinertial rules� (described above). As I discuss in the main

text, my general results shed light notably on the determinacy implications of �rst-di�erence

rules, on the poor performance of superinertial rules in Old Keynesian models (Rudebusch and

Svensson, 1999, and Levin and Williams, 2003), and on the degree of superinertia of �robustly

optimal rules� (Woodford, 2003, Chapter 8, and Giannoni and Woodford, 2002, 2003, 2005).

My results about positive determinacy horizons o�er an explanation for the propensity of

forward-looking interest-rate rules to generate multiplicity in New Keynesian models, as found

in, e.g., Levin et al. (2003). Existing results on this front are mostly numerical and sparsely

distributed across calibrated models and rules; my analytical results generalize them to a broad

class of models and a broad class of rules (making the policy instrument react to any expected

future variable). Woodford (1994) and Bernanke and Woodford (1997) were the �rst to warn

against forward-looking rules on multiplicity grounds.

My results about negative determinacy horizons matter in the presence of inside lags. McCallum

(1999) argues that rules need to take these lags into account to be operational. Benhabib (2004)

analyzes the implications of inside lags for determinacy in a simple monetary-policy model

(analytically in continuous time, numerically in discrete time); he argues that the lag structure
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may be long in discrete time − e.g., up to sixty periods if in�ation changes twice daily and

the interest rate is set according to in�ation lagged thirty days. In Loisel (2021b), I investigate

the ability of stabilization policy to ensure determinacy and uniquely implement a targeted

equilibrium in the presence of inside or outside lags; the approach I take there (starting from

a targeted characteristic polynomial and deriving a corresponding, arbitrarily complex policy-

instrument rule) is radically di�erent from the one I am taking here, and does not lead to any

simple �principle� for stabilization policy.

Benhabib et al. (2001, 2003) derive determinacy conditions analytically for backward- and

forward-looking interest-rate rules in a simple monetary-policy model, depending on whether

prices are �exible or sticky and on how money enters preferences and technology. Their backward-

and forward-looking rules di�er from mine; in particular, their backward-looking rules amount

to inertial rules, as Benhabib et al. (2003) note. Like Benhabib (2004), Benhabib et al. (2001,

2003) conduct most of their analysis in continuous time. The mathematical tools that I use are

helpful for establishing general analytical determinacy conditions in discrete time, but not in

continuous time.1

As I discuss in the main text, my general results provide guidelines for �nding rules with robust

determinacy properties across alternative models. The literature on the robustness of interest-

rate rules across alternative monetary-policy models includes notably Levin et al. (1999, 2003),

Levin and Williams (2003), Taylor and Williams (2011), and Wieland et al. (2012, 2016).

Most of the literature on policy-instrument rules is about monetary policy. The in�uential role

of simple interest-rate rules in the actual conduct of monetary policy is documented in the

contributions in Koenig et al. (2012), and discussed by the Federal Reserve (2018a, 2018b).

But my results apply more generally to any stabilization policy. In particular, �scal policy also

raises indeterminacy issues, as �rst shown by Schmitt-Grohé and Uribe (1997).

I establish not only determinacy conditions, but also multiplicity conditions and explosiveness

conditions. Clarida et al. (2000) and Lubik and Schorfheide (2004) have famously argued that

US macroeconomic volatility before 1979 may be due to multiplicity. Beaudry et al. (2017, 2020)

argue that recent US macroeconomic data are consistent with explosiveness (and convergence

to a limit cycle).

Two limitations of my work are worth mentioning. First, like most of the related literature, I

take the case of local-equilibrium multiplicity seriously. Some authors argue that an equilibrium-

selection criterion should be used in this case, like the minimal-state-variable criterion of Mc-

Callum (1983) − for which Angeletos and Lian (2022) provide a recent formal justi�cation −
or the expectational-stability criterion of Evans (1985). From this alternative point of view,

the distinction between determinacy and multiplicity may not matter anymore; but my results

1The determinacy status depends on the number of characteristic roots inside the unit circle of the complex
plane (in discrete time), or on the number of characteristic roots in the left half-plane (in continuous time).
Rouché's theorem, which I use, can directly characterize the former number, not the latter.
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about explosiveness vs. either determinacy or multiplicity should still be of interest. Second,

and again like most of the related literature (but unlike, e.g., Benhabib et al., 2001, 2002, 2003),

I restrict attention to local equilibria, or their non-existence, in locally log-linearized models.

This focus may not be that much of a limitation if non-local equilibria can be ruled out with the

type of escape clause considered in, e.g., Benhabib et al. (2002); whether they can or cannot is,

however, subject to debate (see, e.g., Cochrane, 2011, 2022).

The rest of the paper is organized as follows. Section 2 illustrates some of the main results

of the paper in the basic New Keynesian model, with a rule making the interest rate react to

in�ation or output. The next two sections generalize the analysis to a broad class of models

and to rules involving any single variable, depending on whether a regularity condition is met

(Section 3) or not (Section 4). Section 5 extends the results to rules involving several variables

and to inertial rules, and discusses some possible applications. I then conclude and provide a

technical appendix.

2 A basic New Keynesian illustration

In this illustrative section, I derive some of the main results of the paper in a simple and well

known context: the basic New Keynesian model, with a rule making the interest rate react to

in�ation or output. The analysis is a special case of the more general analysis conducted in the

next section.

2.1 Determinacy status under Rule 1

I refer the reader to Woodford (2003) and Galí (2015) for a detailed presentation of the basic

New Keynesian model. In this model, at each date t ∈ Z, the private sector sets in�ation πt and

output yt according to the following (locally log-linearized) IS equation and Phillips curve:

yt = Et{yt+1} −
1

σ
(it − Et{πt+1}) , (1)

πt = βEt{πt+1}+ κyt, (2)

where Et{.} denotes the date-t rational-expectations operator, and σ > 0, β ∈ (0, 1), and κ > 0

are three parameters.2 I abstract from exogenous shocks in these structural equations, as they

are irrelevant for determinacy issues. The policymaker is a central bank setting the short-term

nominal interest rate it. I start with the case in which the central bank reacts to the past,

current, or expected future in�ation rate; i.e., I consider the following (locally log-linearized)

interest-rate rule:

it = ϕEt {πt+h} , (Rule 1)

2I use the same notations for the parameters as in Galí (2015). Woodford (2003) uses the same notations for
β and κ, but replaces 1/σ by σ.

7



where (ϕ, h) ∈ R × Z (with Et {πt+h} = πt+h when h ≤ 0). I call ϕ and h the coe�cient and

horizon of in�ation in the rule − or, with slight abuse of language, the coe�cient and horizon

of the rule.

Using the Phillips curve (2) and Rule 1 to replace yt, yt+1, and it in the IS equation (1), I get

the dynamic equation

βEt {πt+2} −
(
1 + β +

κ

σ

)
Et {πt+1}+ πt +

ϕκ

σ
Et {πt+h} = 0.

Using the lag operator L, I rewrite this dynamic equation as

Et {Q(L)πt+2}+
ϕκ

σ
Et {πt+h} = 0, (3)

where Q(z) := β − (1+ β + κ/σ)z+ z2 ∈ R[z].3 Let ν denote the number of non-predetermined

variables of this dynamic equation, P (z) the reciprocal polynomial of its characteristic polyno-

mial, C the circle of radius 1 centered at the origin of the complex plane, and p the number

of roots of P (z) inside C.4 As follows from Blanchard and Kahn (1980), the dynamic equation

has an in�nity of stationary solutions if p < ν, a unique stationary solution if p = ν, and no

stationary solution if p > ν. I say that the �determinacy status� S(ϕ, h) of the system composed

of the structural equations (1)-(2) and Rule 1 is equal to M (for �multiplicity�) in the �rst case,

D (for �determinacy�) in the second case, and E (for �explosiveness�) in the third case.

Under an interest-rate peg (ϕ = 0), we have ν = 2 (the two non-predetermined variables being

Et {πt+1} and Et {πt+2}) and P (z) = Q(z). Since Q(0) = β > 0, Q(1) = −κ/σ < 0, and

limz∈R,z→+∞Q(z) = +∞, Q(z) has one root in (0, 1) and another in (1,+∞). With p = 1 roots

inside C for ν = 2 non-predetermined variables, thus, the dynamic equation has an in�nity of

stationary solutions: S(0, h) = M for any h ∈ Z.

When the interest rate is not pegged (ϕ ̸= 0), we generically have ν = max(2, h) (the non-

predetermined variables being Et {πt+k} for k ∈ {1,max(2, h)}) and

P (z) = Q(z)zmax(0,h−2) +
ϕκ

σ
zmax(0,2−h).

This result is �generic� in the sense of holding for all (ϕ, h) ∈ (R \ {0}) × Z except (ϕ, h) =

(−βσ/κ, 2). If (ϕ, h) = (−βσ/κ, 2), then the coe�cient of Et {πt+2} in the dynamic equation is

0, and we get ν = 1 instead of ν = 2. I study such zero-measure cases in detail in Loisel (2009);

I ignore them in the present paper.

I determine the determinacy status S(ϕ, h) for |ϕ| su�ciently small or large, and/or for |h|
su�ciently large. I obtain the following results:5

3Throughout the paper, R[z] denotes the set of polynomials in z with real-number coe�cients. Similarly, C[z]
denotes the set of polynomials in z with complex coe�cients.

4For any P̃ (z) ∈ R[z] of degree d, the reciprocal polynomial of P̃ (z) is zdP̃ (z−1). I work with the reciprocal
polynomial of the characteristic polynomial, rather than with the characteristic polynomial itself, as the former
is more convenient to use than the latter in conjunction with the lag operator.

5In this proposition and in the rest of the paper, I use the shortcut �∀ |ϕ| ...� for �∀ϕ ∈ R such that |ϕ| ...�.
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Proposition 1 (Determinacy status in the basic New Keynesian model under Rule

1): Consider the basic New Keynesian model (1)-(2) with the rule it = ϕEt {πt+h}, where

(ϕ, h) ∈ R× Z. Let ϕ := (σ/κ)minz∈C |Q(z)| and ϕ̄ := (σ/κ)maxz∈C |Q(z)|. Then:
(a) ∀ |ϕ| < ϕ, ∀h ∈ Z, S(ϕ, h) = M ;

(b) ∀ |ϕ| > ϕ̄, (i) ∀h ≤ −1, S(ϕ, h) = E, (ii) S(ϕ, 0) = D, (iii) ∀h ≥ 1, S(ϕ, h) = M ;

(c) ∃h̄ ∈ Z, ∀ |ϕ| ∈ (ϕ, ϕ̄), ∀h ≥ h̄, S(ϕ, h) = M ;

(d) ∃h : (ϕ, ϕ̄) → Z, (i) ∀ |ϕ| ∈ (ϕ, ϕ̄), ∀h ≤ h (|ϕ|), S(ϕ, h) = E, (ii) ∀ε ∈ (0, ϕ̄ − ϕ), h is

bounded on (ϕ+ ε, ϕ̄).

Proof : See Subsection 2.2 and Appendix A.1. ■

This proposition may look a bit cryptic at �rst sight. To enable the reader to grasp it at a

glance, I represent it diagrammatically in Figure 1. This �gure shows the determinacy status

S(ϕ, h) in the pseudo half-plane (h, |ϕ|) ∈ Z× R+, according to Proposition 1.

Figure 1: Determinacy status for the basic New Keynesian model and Rule 1

b Determinacy b Multiplicity b Explosiveness Not characterized in Proposition 1

In the next two subsections, to convey the intuition behind Proposition 1, I prove Points (a)-(b)

and I provide an outline of the proof of Points (c)-(d).

2.2 Proof of Points (a)-(b) of Proposition 1

Points (a)-(b) of Proposition 1 are about the determinacy status S(ϕ, h) for a su�ciently small

or large absolute value of the coe�cient ϕ. To prove these points, I use the theorem of Rouché

(1862). I refer the reader to Henrici (1988, Theorem 4.10b, Page 280) for a general and modern

statement of this theorem. Because I will apply it only to polynomials, I only need the following,

more restrictive version of the theorem, where the term �Jordan curve� refers to a non-self-

intersecting closed curve in the complex plane, and where the subscripts �b� and �s� stand

respectively for �big� and �small�:
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Theorem 1 (Rouché, 1862): Let J be a Jordan curve, Pb(z) ∈ C[z], and Ps(z) ∈ C[z]. If

∀z ∈ J , |Pb(z)| > |Ps(z)|, then Pb(z) + Ps(z) and Pb(z) have the same number of roots inside

J (counting multiplicity).

Proof : See Henrici (1988, Page 280). ■

To determine S(ϕ, h) for |ϕ| su�ciently small, I apply Rouché's theorem to J = C, Pb(z) =

Q(z)zmax(0,h−2), and Ps(z) = (ϕκ/σ)zmax(0,2−h) (with, thus, Pb(z) + Ps(z) = P (z)). For any

|ϕ| < ϕ := (σ/κ)minz̃∈C |Q (z̃)| and any z ∈ C, we have∣∣∣Q(z)zmax(0,h−2)
∣∣∣ = |Q(z)| ≥ min

z̃∈C
|Q (z̃)| =

ϕκ

σ
>

|ϕ|κ
σ

=

∣∣∣∣ϕκσ zmax(0,2−h)

∣∣∣∣ .
So, Rouché's theorem implies that P (z) has the same number of roots inside C asQ(z)zmax(0,h−2).

The latter polynomial has exactly max(1, h− 1) roots inside C, since Q(z) has exactly one root

inside C. Therefore, p = max(1, h− 1) < max(2, h) = ν, and we get S(ϕ, h) = M for any h ∈ Z.
Intuitively, for |ϕ| su�ciently small, the rule does not change the system's dynamics enough to

a�ect the determinacy status, and this status remains the same as under an interest-rate peg

(i.e., multiplicity).

To determine S(ϕ, h) for |ϕ| su�ciently large, I switch Pb(z) and Ps(z): i.e., I apply Rouché's

theorem to J = C, Pb(z) = (ϕκ/σ)zmax(0,2−h), and Ps(z) = Q(z)zmax(0,h−2). For any |ϕ| > ϕ̄ :=

(σ/κ)maxz̃∈C |Q (z̃)| and any z ∈ C, we have∣∣∣∣ϕκσ zmax(0,2−h)

∣∣∣∣ = |ϕ|κ
σ

>
ϕ̄κ

σ
= max

z̃∈C
|Q (z̃)| ≥ |Q(z)| =

∣∣∣Q(z)zmax(0,h−2)
∣∣∣ .

So, Rouché's theorem implies that P (z) has the same number of roots inside C as (ϕκ/σ)zmax(0,2−h).

The latter polynomial has exactly max(0, 2 − h) roots inside C; so, p = max(0, 2 − h). Since

ν = max(2, h), we get: (i) if h ≤ −1, then p > ν and S(ϕ, h) = E; (ii) if h = 0, then p = ν

and S(ϕ, h) = D; and (iii) if h ≥ 1, then p < ν and S(ϕ, h) = M . Intuitively, for |ϕ| su�ciently

large, the rule dominates the structural equations in the system's dynamics: a large weight |ϕ|
on past in�ation (h ≤ −1) favors exploding paths and leads to explosiveness; a large weight |ϕ|
on expected future in�ation (h ≥ 1) favors imploding paths and leads to multiplicity.

I show in Appendix A.2 that ϕ = 1 and ϕ̄ = 1 + 2(1 + β)σ/κ. That Rule 1 does not deliver

determinacy in the basic New Keynesian model for ϕ ∈ (0, 1) and ϕ > 1+2(1+β)σ/κ is already

known for h = 1 (see, e.g., Galí, 2015, Chapter 4, and Woodford, 2003, Chapter 4). Points

(a)-(b) of Proposition 1 extend this result to any horizon h ∈ Z \ {0}.

2.3 Outline of the proof of Points (c)-(d) of Proposition 1

Point (c) of Proposition 1 is about the existence of h̄ ∈ Z such that S(ϕ, h) = M for any

|ϕ| ∈ (ϕ, ϕ̄) and any h ≥ h̄. In my proof (in Appendix A.1), I do not seek to �nd the smallest
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integer h̄ of that kind; I postpone this question to Subsection 2.6. Let zo denote the root of

Q(z) in (1,+∞), with the subscript �o� standing for �outside C.� Consider a Jordan curve Jo

surrounding zo and not intersecting nor surrounding C. I apply Rouché's theorem to J = Jo,

Pb(z) = Q(z)zh−2, and Ps(z) = ϕκ/σ. I obtain that for h su�ciently large, P (z) has exactly

one root inside Jo, and hence at least one root outside C, which implies p < ν and S(ϕ, h) = M .

The intuition for this result is the following. Under an interest-rate peg (ϕ = 0), we have a

multiplicity of equilibrium paths that converge over time to zero at rate z−1
o . When the interest

rate is not pegged (ϕ ̸= 0), these paths are no longer equilibrium paths: they do not satisfy the

dynamic equation (3) because of the term (ϕκ/σ)Et{πt+h} in this equation. When h is large,

however, they are �close to satisfying� the dynamic equation, as the term (ϕκ/σ)Et{πt+h} is,

on these paths, proportional to z−h
o and hence close to zero. As a result, by continuity, there

are neighboring paths that do satisfy the dynamic equation; i.e., there are equilibrium paths

that converge over time to zero at a rate close to z−1
o . As h → +∞, these equilibrium paths

uniformly converge to those under an interest-rate peg, as the rate at which they converge over

time to zero converges to z−1
o (as can be readily checked by considering an arbitrarily small

Jordan curve Jo around zo in the reasoning above). In this sense, arbitrarily large horizons in

the rule preserve all the local equilibria existing under an interest-rate peg.

Point (d) of Proposition 1 is about the determinacy status for |ϕ| ∈ (ϕ, ϕ̄) and −h su�ciently

large. To prove this point in Appendix A.1, I consider a given |ϕ| ∈ (ϕ, ϕ̄) and I proceed in four

steps. In the �rst step, I show that all but one root of P (z) converge uniformly to C as h → −∞.

I get this result by applying Rouché's theorem twice: once to a circle approaching C from inside,

and another time to a circle approaching C from outside. In the second step, I show that the

roots of P (z) uniformly converging to C as h → −∞ converge in distribution to the uniform

distribution on C. This result is a direct consequence of the second complex-analysis theorem

that I use in the paper: the theorem of Erd®s and Turán (1950), which I state in Appendix A.1.

In the third step, I consider an arc A of C on which the rule �dominates� the structural equations:

∀z ∈ A, |ϕ| > |Q(z)|σ/κ ≥ ϕ. I use again Rouché's theorem to show that as h → −∞, any root

of P (z) close to A lies inside C − re�ecting the fact that a su�ciently large weight on su�ciently

ancient outcomes favors exploding paths. Given the result of the second step, therefore, the share

of roots of P (z) inside C is bounded below by ℓ(A)/ℓ(C) as h → −∞, where ℓ(.) denotes the

standard length operator (i.e., the Lebesgue measure on C). As a result, as h → −∞, the

number of roots of P (z) inside C grows unboundedly (p → +∞) and eventually exceeds the

constant number of non-predetermined variables (ν = 2), leading to explosiveness. In the fourth

step, �nally, I use the fact that if |ϕ| is bounded away from ϕ, then ℓ(A) is bounded away from

zero, and the function h(.) mentioned in Point (d) of Proposition 1 can be chosen bounded.
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2.4 Determinacy status under Rule 2

I now replace in�ation with output in the rule; i.e., I consider the rule

it = ϕEt {yt+h} . (Rule 2)

Using the Phillips curve (2) and Rule 2 to replace yt, yt+1, and it in the IS equation (1), I get

the following dynamic equation:

βEt {πt+2} −
(
1 + β +

κ

σ

)
Et {πt+1}+ πt +

ϕ

σ
(Et {πt+h} − βEt {πt+h+1}) = 0.

So, when the interest rate is not pegged (ϕ ̸= 0), there are now ν = max(2, h + 1) non-

predetermined variables, and the reciprocal polynomial of the characteristic polynomial is

P (z) = Q(z)zmax(0,h−1) +
ϕ

σ
(z − β) zmax(0,1−h).

It is easy to conduct the same analysis as in the previous subsections, replacing Q(z)zmax(0,h−2),

(ϕκ/σ)zmax(0,2−h), ϕ := (σ/κ)minz∈C |Q(z)|, and ϕ̄ := (σ/κ)maxz∈C |Q(z)| by, respectively,
Q(z)zmax(0,h−1), (ϕ/σ)(z−β)zmax(0,1−h), ϕ := σminz∈C |Q(z)/(z − β)|, and ϕ̄ := σmaxz∈C |Q(z)

/(z − β)|. Since β ∈ (0, 1), the results are unchanged: Points (a)-(d) of Proposition 1 still hold

with the new thresholds ϕ and ϕ̄.

Proposition 2 (Determinacy status in the basic New Keynesian model under Rule

2): Consider the basic New Keynesian model (1)-(2) with the rule it = ϕEt {yt+h}, where

(ϕ, h) ∈ R × Z. Let ϕ := σminz∈C |Q(z)/(z − β)| and ϕ̄ := σmaxz∈C |Q(z)/(z − β)|. Then,

Points (a)-(d) of Proposition 1 still hold.

Proposition 2 can be represented in exactly the same diagrammatic form as Proposition 1:

Figure 1 shows the determinacy status in the basic New Keynesian model not only under Rule

1, but also under Rule 2. The analytical expression of the thresholds ϕ and ϕ̄ under Rule 2 are

determined in Appendix A.3.

2.5 Numerical example

In order to illustrate Proposition 1-2 and the next propositions numerically, I consider Wood-

ford's (2003, Chapter 4) calibration of the basic New Keynesian model: (β, κ, σ) = (0.99, 0.022,

0.16), the period being one quarter. I call �Model 1� the resulting calibrated model, as it is the

�rst of several calibrated models that I will consider in the paper.

The results obtained for Model 1 and Rules 1-2 are presented in Figure 2. This �gure represents

the determinacy status S(ϕ, h) in the pseudo half-plane (h, ϕ) ∈ Z×R+ with a log scale for ϕ. I

focus on positive values of ϕ for consistency with the theoretical and empirical literatures. The
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Figure 2: Determinacy status for Model 1 and Rules 1-2

b Determinacy b Multiplicity b Explosiveness

coe�cient threshold ϕW featuring in the �gure will be introduced and commented upon in the

next subsection.

Even though the basic New Keynesian model is clearly not a quantitative model, a few features

of this �gure are worth emphasizing. First, the horizon threshold at and above which the rule

can no longer deliver determinacy (i.e., the lowest integer h̄ in Point (c) of Propositions 1-2) is

two quarters for Rule 1, and one quarter for Rule 2. So, in this numerical example, monetary

policy should hardly be forward-looking (under Rule 1), or not be forward-looking at all (under

Rule 2), in order to ensure determinacy. In the next subsection, I will determine analytically

this horizon threshold for Rule 1, and I will argue that it is typically low.

Second, Rule 2 can no longer deliver determinacy for a horizon equal to or lower than minus

two quarters. So, in this numerical example, a central bank that would react to output with a

delay of two or more quarters, say because of data-publication lags, would necessarily be behind

the curve and fail to ensure determinacy, no matter how strongly or weakly it reacts to output.

In Subsection 2.7, I will derive analytically a necessary and su�cient condition for existence of

such a horizon threshold at and below which Rule 2 can no longer deliver determinacy.

Third, compared to standard values of ϕ in the literature (often between 0.5 and 2), the lower

coe�cient threshold ϕ is of the same order of magnitude or one order of magnitude smaller, while

the upper coe�cient threshold ϕ̄ is of the same order of magnitude or one order of magnitude

larger.

In addition, I have also considered Galí's (2015, Chapter 3) calibration of the basic New Keyne-

sian model: (β, κ, σ) = (0.99, 0.125, 1), the period being again one quarter. Most of the results

under this alternative calibration are qualitatively and quantitatively similar. In particular,

determinacy can again be obtained only for h ≤ 1 under Rule 1, and only for h ∈ {−1, 0} under

Rule 2. The only notable di�erence is that ϕ and ϕ̄ for Rule 2 are roughly multiplied by a factor
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of 6 (essentially because of the di�erence in the value of σ between the two calibrations).

2.6 Determinacy horizons and Taylor principle under Rule 1

I now characterize more precisely the set of horizons for which Rules 1 and 2 can deliver deter-

minacy, i.e. the set HD := {h ∈ Z|∃ϕ ∈ R, S(ϕ, h) = D} (which I call the set of �determinacy

horizons�), in order to assess the desirability of forward- and backward-looking monetary policy.

I also examine the validity of the Taylor principle as a condition for determinacy. I do that for

Rule 1 in this subsection, and for Rule 2 in the next subsection.

Before stating the results, I need to specify what I mean by �Taylor principle.� There are several

versions of this principle in the literature. The simplest and narrowest version is that the rule

should make the interest rate react more than one-for-one to the in�ation rate, when it reacts

only to the in�ation rate. Another, more general version, sometimes called the long-run Taylor

principle, was proposed by Woodford (2001, 2003) and is used in, e.g., Galí (2015, Chapter 4).

For the sake of generality, I adopt the latter version of the Taylor principle − which, in the basic

New Keynesian model under Rule 1, amounts anyway to the former version.

I will provide a formal, general de�nition of the long-run Taylor principle in Section 3. In

the current section, I only need to state this principle in the speci�c context of the basic New

Keynesian model, under Rule 1 or 2. In this context, loosely speaking, the long-run Taylor

principle states that if the in�ation rate were permanently higher by one percentage point,

then the system composed of the Phillips curve (2) and Rule 1 or 2 should make the interest

rate permanently higher by more than one percentage point. Under Rule 1, this principle

straightforwardly translates into ϕ > ϕW := 1, where the subscript W stands for �Woodford.�

Under Rule 2, this principle amounts to ϕ > ϕW := κ/(1−β), since the Phillips curve (2) implies

that a permanent increase in in�ation of one percentage point leads to a permanent increase in

output of (1− β)/κ percentage points.

I can now state the results for Rule 1 as follows:

Proposition 3 (Determinacy horizons and Taylor principle in the basic New Key-

nesian model under Rule 1): Consider the basic New Keynesian model (1)-(2) with the rule

it = ϕEt {πt+h}, where (ϕ, h) ∈ R× Z. Then ϕW = ϕ and:

(a) HD = {h ∈ Z|h < 1 + (1− β)σ/κ};
(b) ∀h ∈ Z \HD, the Taylor principle is irrelevant for D;

(c) ∀h ∈ HD, the Taylor principle is locally necessary and su�cient for D;

(d) ∀h ∈ HD, the Taylor principle is su�cient for D if and only if h = 0.

Proof : See Appendix A.4. ■

Point (a) of this proposition characterizes the set HD. It gives the analytical expression of
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the smallest integer h̄ in Point (c) of Proposition 1. In standard calibrations of the basic New

Keynesian model, the horizon threshold 1 + (1− β)σ/κ is typically between 1 and 2, because β

is typically set to 0.99 (on a quarterly basis). In the two calibrations considered in the previous

subsection, in particular, this threshold takes the values 1.07 and 1.08, which are much closer to

1 than to 2. So, in the basic New Keynesian model, a central bank reacting to in�ation should

hardly be forward-looking, if at all, in order to ensure determinacy.

Point (a) of Proposition 3 also says that a central bank reacting to in�ation can be arbitrarily

backward-looking and still ensure determinacy; but, as we know from Point (d) of Proposition

1, the set of values for ϕ leading to determinacy gradually shrinks to the empty set as h → −∞.

Points (b)-(d) of Proposition 3 are about the Taylor principle as a condition for determinacy.

Point (b) straightforwardly follows from the de�nition of HD. Point (d) of Proposition 3 essen-

tially follows from Point (b) of Proposition 1. Point (c) states a local result, i.e. a result holding

for ϕ in the neighborhood of ϕW = 1. As ϕ crosses ϕW from below, one root of P (z) crosses C
at point 1. When h < 1+(1−β)σ/κ, the root goes from outside to inside C, so the determinacy

status moves from multiplicity to determinacy. Alternatively, when h > 1+(1−β)σ/κ, the root

goes from inside to outside C, so the determinacy status remains multiplicity. All these results

about the Taylor principle can be seen in the left panel of Figure 2, where I have featured ϕW .

2.7 Determinacy horizons and Taylor principle under Rule 2

I now turn to Rule 2: I characterize again, this time partially, the set of determinacy horizons

HD, and I study again the validity of the Taylor principle as a condition for determinacy. As

discussed in the previous subsection, the Taylor principle under Rule 2 is ϕ > ϕW := κ/(1− β).

Let me de�ne

η :=

[
(1− β)2 +

(
1 + β +

κ

σ

)2]
β − (1 + β)

(
1 + β2

) (
1 + β +

κ

σ

)
.

I can then state the results for Rule 2 as follows:

Proposition 4 (Determinacy horizons and Taylor principle in the basic New Key-

nesian model under Rule 2): Consider the basic New Keynesian model (1)-(2) with the rule

it = ϕEt {yt+h}, where (ϕ, h) ∈ R× Z. Then:
(a) HD is bounded above;

(b) HD is bounded below if and only if
∣∣η − 4β2

∣∣ < 4β
(
1 + β2

)
;

(c) ∀h ∈ Z \HD, the Taylor principle is irrelevant for D;

(d) ∀h ∈ HD, the Taylor principle is su�cient for D if and only if h = 0;

(e) if (and only if) κ/σ ≥ (1 + β)(1− β)2/β, then: (i) ϕW = ϕ̄, (ii) ∀h ≤ −1, the Taylor prin-

ciple is su�cient for E, (iii) for h = 0, it is su�cient for D, (iv) ∀h ≥ 1, it is su�. for M ;

(f) if (and only if) η−4β2 < −4β
(
1 + β2

)
, then: (i) ϕW = ϕ, (ii) ∀h ∈ Z, the Taylor principle

is locally necessary and su�cient for D if and only if h < (1− β)(1 + σ/κ).
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Proof : see Appendix A.5. ■

Points (a) and (c) of this proposition straightforwardly follow from, respectively, Point (c) of

Proposition 2 and the de�nition of HD. Points (d)-(e) of Proposition 4 essentially follow from

Point (b) of Proposition 2. Note that Point (e) of Proposition 4 has no counterpart in Proposition

3; the reason is that under Rule 1, unlike under Rule 2, we necessarily have ϕW = ϕ and hence

ϕW ̸= ϕ̄ (as stated in Proposition 3).

Point (b) of Proposition 4 states the necessary and su�cient condition on the structural pa-

rameters for HD to be bounded below. If this condition is met, then a central bank reacting to

output with a su�ciently long delay will necessarily generate either multiplicity or explosiveness,

no matter how strongly or weakly it reacts to output. The condition stated in this point is, in

fact, necessary and su�cient for argminz∈C |Q(z)/(z − β)| ⊂ C \ {−1, 1}, i.e. for the minimum

in the de�nition of ϕ to be obtained for some non-real z's, whose number is necessarily even.

So, as |ϕ| crosses ϕ from below, an even number of roots of P (z) cross C, either from inside to

outside, or vice-versa. To move from multiplicity to determinacy, however, we would need ex-

actly one root of P (z) to go from outside to inside C. So, the determinacy status either remains

multiplicity, or jumps directly from multiplicity to explosiveness. For −h su�ciently large, if

no |ϕ| in the neighborhood of ϕ can ensure determinacy, then more generally no |ϕ| ∈ R+ can

ensure determinacy. Note that Point (b) of Proposition 4 has no counterpart in Proposition

3; the reason is that under Rule 1, unlike under Rule 2, the minimum in the de�nition of ϕ is

necessarily obtained for z = 1: argminz∈C |Q(z)| = {1} ̸⊂ C \ {−1, 1}.

The conditions stated in Point (b) and (e) of Proposition 4 are met in Model 1, as apparent

in the right panel of Figure 2 (where I have featured ϕW ). They are also met under the other

calibration considered in Subsection 2.5.

Point (f) of Proposition 4 is similar to Point (c) of Proposition 3. Under the condition stated

in this point, one root of P (z) crosses C at point 1 as ϕ crosses ϕW from below. When h <

(1− β)(1 + σ/κ), the root goes from outside to inside C, so the determinacy status moves from

multiplicity to determinacy. Alternatively, when h > (1−β)(1+σ/κ), the root goes from inside

to outside C, so the determinacy status remains multiplicity.

3 Determinacy analysis for regular systems

In this section, I generalize the results of the previous section to a broad class of dynamic

rational-expectations models, and to rules making the policy instrument react to any variable

(or linear combination of variables) at horizon h with coe�cient ϕ. I focus on models and rules

that make the dynamic system �regular� in a sense that I specify below; I postpone the analysis

of non-regular systems to the next section.
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3.1 Model and rule

At each date t ∈ Z, the private sector sets an n-dimension vector of endogenous variables Xt

according to the following (locally log-linearized) structural equations:

Et

{
∆
(
L−1

) [
A (L)Xt + L−γB (L) it

]}
= 0, (4)

where again it denotes the policy instrument at date t, L the lag operator, and Et{.} the date-t

rational-expectations operator. I abstract again from exogenous shocks, as they are irrelevant

for determinacy issues. These structural equations are parameterized by n ∈ N \ {0}, γ ∈ N,
A(z) ∈ Rn×n[z], B(z) ∈ Rn×1[z], and ∆(z) ∈ Rn×n[z] which is a diagonal matrix whose jth

diagonal element is zδj with δj ∈ N.6

I make two non-restrictive assumptions on A(z) and B(z). First, I assume that det[A(0)] ̸= 0;

this assumption is made without any loss in generality because any system of independent struc-

tural equations of type (4) that does not satisfy this assumption can be equivalently rewritten

as a system of type (4) that does. Second, I assume that B(z) ̸= 0; this assumption is needed

simply for the policy instrument to have some e�ect on the endogenous variables set by the

private sector.

The structural equations (1)-(2) of the basic New Keynesian model, in particular, can straight-

forwardly be written in a form of type (4) with n = 2, γ = 0,

Xt =

[
yt
πt

]
, ∆(z) =

[
z 0
0 z

]
, A(z) =

[
1− z 1

σ
κz β − z

]
, and B(z) =

[
− z

σ
0

]
.

This system satis�es the two assumptions made above: det[A(0)] = β ̸= 0, and B(z) ̸= 0.

The policymaker follows the following (log-linearized) policy-instrument rule:

it = ϕEt {vt+h} , (5)

where again ϕ ∈ R and h ∈ Z (with Et {vt+h} = vt+h when h ≤ 0), and where vt can be any linear

combination of current and past endogenous variables: vt := V(L)Xt, with V(z) ∈ R1×n[z]. I

make the following non-restrictive assumption on V(z):

W (z) := det

[
A(z) B(z)
V(z) 0

]
̸= 0.

If this assumption were not satis�ed, then vt could be expressed as a linear combination of (a

backward-looking version of) the structural equations, and would therefore be exogenous. In

the basic New Keynesian model, for instance, we have W (z) = [(β − z)V1(z) − κzV2(z)]z/σ,

where V1(z) and V2(z) denote the two elements of V(z); so, imposing W (z) ̸= 0 amounts to

6Throughout the paper, letters in bold denote vectors and matrices that have potentially more than one
element. 0 denotes a vector or a matrix whose elements are all equal to zero and whose dimensions depend on
the speci�c context in which it is used. For any (n1, n2) ∈ (N \ {0})2, Rn1×n2 [z] denotes the set of polynomials
in z whose coe�cients are n1 × n2 matrices with real-number elements.
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ruling out variables vt of type vt = Ṽ (L)(πt−1 − βπt − κyt−1) with Ṽ (z) ∈ R[z], i.e. variables vt
that are �proportional� to a backward-looking version of the Phillips curve (2). Such variables

are exogenous because they can be rewritten, using the Phillips curve (2), as the sum of past

expectation errors: vt = −βṼ (L)(πt − Et−1{πt}). For a horizon h higher than the degree of

Ṽ (z), in particular, the term Et{vt+h} in the rule (5) is simply zero.

3.2 Determinacy status

As in Section 2, let ν denote the number of non-predetermined variables of the system (4)-(5),

and P (z) the reciprocal polynomial of the characteristic polynomial of this system. In addition,

let ω ∈ N denote the multiplicity of 0 as a root of W (z) (with ω = 0 if W (0) ̸= 0). I start by

establishing a useful preliminary result:

Lemma 1: If ϕ = 0, then ν = δ :=
∑n

j=1 δj and P (z) = Q(z) := det[A(z)]. If ϕ ̸= 0, then,

except possibly for a zero-measure set of values of ϕ, ν = δ +max(0, h−m) and

P (z) = Q(z)zmax(0,h−m) + ϕR(z)zmax(0,m−h), (6)

where m := ω − γ and R(z) := −z−ωW (z).

Proof : See Appendix A.6. ■

This lemma generalizes similar preliminary results obtained in Section 2: in the speci�c context

of the basic New Keynesian model, we had Q(z) = β − (1 + β + κ/σ)z + z2 and δ = 2, with

m = 2 and R(z) = κ/σ for Rule 1, and m = 1 and R(z) = (z − β)/σ for Rule 2. The �zero-

measure set of values of ϕ� mentioned in the lemma refers again to the possibility of reducing ν

below δ + max(0, h −m) with carefully designed policy-instrument rules as in Loisel (2009), a

possibility that I ignore in the present paper.

The polynomial Q(z) depends on the model (4), not on the rule (5). It is the reciprocal poly-

nomial of the characteristic polynomial under a policy-instrument peg, i.e. under the policy-

instrument rule it = 0. The polynomial R(z) depends on the model (4) and the variable vt in

the rule (5), not on the coe�cient ϕ nor on the horizon h of the rule (5). It is the reciprocal

polynomial of the characteristic polynomial under the �targeting rule� vt = 0.

Let qC := # {z ∈ C|Q(z) = 0} and rC := # {z ∈ C|R(z) = 0} denote the number of roots of Q(z)

and R(z) on C (counting multiplicity). I distinguish between two cases : the �regular case� in

which qC = rC = 0 (as in Section 2), and the �non-regular case� in which qC ≥ 1 or rC ≥ 1. I

focus on the regular case in the current section, and I will address the non-regular case in the

next section.

I also distinguish between three kinds of models, depending on their determinacy status under a

policy-instrument peg (ϕ = 0). Let p := # {z ∈ C|P (z) = 0, |z| < 1} and q := # {z ∈ C|Q(z) =
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0, |z| < 1} denote the number of roots of P (z) and Q(z) inside C (counting multiplicity). As

follows from Lemma 1, p = q and ν = δ under a policy-instrument peg. As a result, Blanchard

and Kahn's (1980) root-counting condition for determinacy, p = ν, is met under a peg if and

only if q = δ. I assume here, and everywhere else in the paper, that Blanchard and Kahn's

(1980) no-decoupling condition is met (it is straightforward to check that it is met in all the

speci�c examples I consider in the paper).7 As a result, the determinacy status under a peg is

multiplicity for models with q ≤ δ−1 (∀h ∈ Z, S(0, h) = M), determinacy for models with q = δ

(∀h ∈ Z, S(0, h) = D), and explosiveness for models with q ≥ δ+1 (∀h ∈ Z, S(0, h) = E). As I

document in the Introduction, one comes across the three types of models in the monetary-policy

literature.

Using Lemma 1, it is easy to conduct the same analysis as in Section 2, and thus to generalize

Propositions 1-2 to the class of models (4) and the class of rules (5). I obtain the following

proposition, where r := # {z ∈ C|R(z) = 0, |z| < 1} denotes the number of roots of R(z) inside

C (counting multiplicity):

Proposition 5 (Determinacy status for systems with qC = rC = 0): Consider a model (4)

and a variable vt such that qC = rC = 0. Let ϕ := minz∈C |Q(z)/R(z)|, ϕ̄ := maxz∈C |Q(z)/R(z)|,
and h∗ := m+ r − δ. Then, under the rule it = ϕEt {vt+h} with (ϕ, h) ∈ R× Z:
(a) ∀ |ϕ| < ϕ, ∀h ∈ Z, (i) if q ≤ δ − 1, then S(ϕ, h) = M , (ii) if q = δ, then S(ϕ, h) = D, (iii)

if q ≥ δ + 1, then S(ϕ, h) = E;

(b) ∀ |ϕ| > ϕ̄, (i) ∀h ≤ h∗ − 1, S(ϕ, h) = E, (ii) S(ϕ, h∗) = D, (iii) ∀h ≥ h∗ + 1, S(ϕ, h) = M ;

(c) ∃h̄ : (ϕ, ϕ̄) → Z, (i) ∀ |ϕ| ∈ (ϕ, ϕ̄), ∀h ≥ h̄ (|ϕ|), S(ϕ, h) = M , (ii) ∀ε ∈ (0, ϕ̄ − ϕ), h̄ is

bounded on (ϕ+ ε, ϕ̄), (iii) if q ≤ δ − 1, then h̄ is bounded on (ϕ, ϕ̄);

(d) ∃h : (ϕ, ϕ̄) → Z, (i) ∀ |ϕ| ∈ (ϕ, ϕ̄), ∀h ≤ h (|ϕ|), S(ϕ, h) = E, (ii) ∀ε ∈ (0, ϕ̄ − ϕ), h is

bounded on (ϕ+ ε, ϕ̄), (iii) if q ≥ δ + 1, then h is bounded on (ϕ, ϕ̄).

Proof : See Appendix A.7. ■

Like Propositions 1-2, this proposition may look a bit cryptic at �rst sight. Like Propositions 1-2,

however, it can be represented in a simple diagrammatic form: Figure 3 shows the determinacy

status S(ϕ, h) in the pseudo half-plane (h, |ϕ|) ∈ Z× R+, according to Proposition 5.

The intuitions behind Proposition 5 are identical or similar to those behind Propositions 1-2.

In Point (a), as |ϕ| < ϕ, the rule does not change the system's dynamics enough to a�ect

the determinacy status, and this status remains the same as under a policy-instrument peg.

Compared to Point (a) of Propositions 1-2, the novelty is that the determinacy status under a

peg can now be not only M (when q ≤ δ− 1), but also D (when q = δ) and E (when q ≥ δ+1).

7The �no-decoupling condition� requires that the system should not be �decoupled� in the sense of Sims (2007).
It is formulated as a matrix-rank condition in Blanchard and Kahn (1980, Page 1308), and is often called the �rank
condition� in the literature. Sims' (2007) bare-bones example of a system meeting the root-counting condition
but not the no-decoupling condition is xt = 1.1xt−1 + εt and Et{yt+1} = 0.9yt + νt.
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Figure 3: Determinacy status for systems with qC = rC = 0

b Determinacy b Multiplicity b Explosiveness Not characterized in Proposition 5

In Point (b), as |ϕ| > ϕ̄, the rule dominates the structural equations in the system's dynamics

and makes the determinacy status depend only on h. Compared to Point (b) of Propositions

1-2, the novelty is that the horizon h∗ can now be di�erent from zero.

Points (c)-(i), (c)-(ii), (d)-(i), and (d)-(ii) of Proposition 5 generalize Point (d) of Propositions

1-2. For |ϕ| ∈ (ϕ, ϕ̄), as |h| → +∞, the roots of P (z) distribute themselves between inside

and outside C in proportion of the share of C on which the structural equations dominate the

rule and the share of C on which the rule dominates the structural equations. So, as h → −∞
(resp. as h → +∞), we eventually get more (resp. fewer) inside roots than non-predetermined

variables, and hence explosiveness (resp. multiplicity).

Finally, Points (c)-(iii) and (d)-(iii) of Proposition 5 generalize Point (c) of Propositions 1-2.

Large positive (resp. negative) horizons h do not much perturb the imploding (resp. exploding)

equilibrium paths obtained under a policy-instrument peg, as the term Et{vt+h} is small on

these paths; so, these horizons preserve the determinacy status obtained under a peg if this

status is multiplicity (resp. explosiveness).

3.3 Numerical examples

In order to illustrate Proposition 5 and the next propositions numerically, I consider, in addition

to Model 1, �ve other simple calibrated monetary-policy models. Table 1 presents the overall six

models: two are with q = δ− 1, two with q = δ, and two with q = δ+1. All these models share

the following features: they have two structural equations; these equations are an IS equation

and a Phillips curve; and the two endogenous variables set by the private sector are output and

in�ation.
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Table 1: Six simple calibrated monetary-policy models

No. Model Calibration q − δ

1 Basic New Keynesian Model Woodford (2003) -1
2 McKay et al. (2017) McKay et al. (2017) -1
3 Gabaix (2020) Gabaix (2020) 0
4 Bilbiie (2008) Bilbiie (2008) 0
5 Svensson (1997) and Ball (1999) Ball (1999) 1
6 Rudebusch and Svensson (1999) Rudebusch and Svensson (1999) 1

The IS equation and the Phillips curve of Models 2-4 are of type

yt = αEt{yt+1} −
1

σ
(it − Et{πt+1}) ,

πt = βEt{πt+1}+ κyt,

where the notations are the same as in Section 2, and α ∈ (0, 1] is an additional parame-

ter. The parameters (α, β, σ, κ) take the following values: (0.97, 0.99, 2.67, 0.02) in Model 2,

(0.85, 0.792, 5, 0.11) in Model 3, and (1, 0.99,−0.11, 0.228) in Model 4. These models introduce,

into the basic New Keynesian model, income risk and borrowing constraints (Model 2), bounded

rationality (Model 3), or limited asset-markets participation (Model 4). Compared to the basic

New Keynesian model (in which α is implicitly equal to 1), Model 2 �discounts� the IS equation

(i.e. reduces α), Model 3 discounts both the IS equation and the Phillips curve (i.e. reduces

both α and β), and Model 4 inverts the slope of the IS equation (i.e. makes σ negative).

Unlike Models 1-4, Models 5-6 are non-micro-founded and purely backward-looking. The IS

equation and the Phillips curve of Model 5 are

yt = λyt−1 − µ (it−1 − πt−1) ,

πt = πt−1 + χyt−1,

where (λ, µ, χ) = (0.8, 1, 0.4). The IS equation and the Phillips curve of Model 6 have a richer

lag structure:

yt =
∑2

k=1
λkyt−k − (µ/4)

∑4

k=1
(it−k − πt−k) ,

πt =
∑4

k=1
θkπt−k + χyt−1.

The parameters (λ1, λ2, µ, θ1, θ2, θ3, θ4, χ), estimated on US data, take the values (1.16,−0.25,

0.10, 0.70,−0.10, 0.28, 0.12, 0.14).

A �rst numerical illustration of Proposition 5 is provided by Figure 2 in Section 2. This �gure,

which I have already commented upon, shows the determinacy status S(ϕ, h) for Model 1 and

Rules 1-2, in the pseudo half-plane (h, ϕ) ∈ Z×R+ with a log scale for ϕ. Since Model 1 satis�es

q = δ − 1, Figure 2 is more speci�cally a numerical example of the left panel of Figure 3.

Figure 4 is the counterpart of Figure 2 for Models 3-5. The top four panels of this �gure show

the determinacy status for the systems (Model j, Rule k) with j ∈ {3, 4} and k ∈ {1, 2}. These
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systems satisfy qC = rC = 0; therefore, they fall within the ambit of Proposition 5. Moreover,

Models 3-4 satisfy q = δ; so, the top four panels of Figure 4 are, more speci�cally, numerical

examples of the middle panel of Figure 3. In these panels, thus, the rule can deliver determinacy

for any horizon h, unlike in Figure 2. Compared to standard values of ϕ, the lower threshold ϕ is

of the same order of magnitude or several orders of magnitude smaller, while the upper threshold

ϕ̄ is of the same order of magnitude or several orders of magnitude larger. The �topology� of the

E, D, and M regions is simple in the top two panels (for Model 3): each region is connected,

and the borders between regions are monotonic functions linking h to ϕ. The topology is more

complex in the middle two panels (for Model 4): the M region is disconnected, and the borders

between regions are non-monotonic, with �lace patterns.�

The bottom left panel of Figure 4 shows the determinacy status for the system (Model 5, Rule

1). This system also satis�es qC = rC = 0, and hence also falls within the ambit of Proposition 5.

Moreover, Model 5 satis�es q = δ+1; so, the bottom left panel of Figure 4 is, more speci�cally,

a numerical example of the right panel of Figure 3. Qualitatively speaking, the D region in the

bottom left panel of Figure 4 looks like the mirror image, with left and right reversed, of the D

region in the left panel of Figure 2. The horizon threshold at and below which the rule can no

longer deliver determinacy is minus one period; so, in this example, a central bank that would

react to in�ation with a delay of at least one period would necessarily be behind the curve and

fail to ensure determinacy, no matter how strongly or weakly it reacts to in�ation. Compared

to standard values of ϕ, the lower threshold is of the same order of magnitude, while the upper

threshold is one order of magnitude larger.

Finally, the bottom right panel of Figure 4 shows the determinacy status for the system (Model

5, Rule 2). This system satis�es qC = 0, but not rC = 0. For this system, indeed, we have

R(z) = (1− z)/χ and hence rC = 1, because the Phillips curve of Model 5 is vertical in the long

run. So, the bottom right panel of Figure 4 is not an illustration of Proposition 5. I will analyze

the case rC ≥ 1 in Section 4.

3.4 Determinacy horizons

I now turn to the question of whether the set of determinacy horizons HD := {h ∈ Z|∃ϕ ∈
R, S(ϕ, h) = D} is bounded or not, below or above. This question matters for the desirability

of backward- or forward-looking stabilization policy. Let Amin := argminz∈C |Q(z)/R(z)|. I

provide the following answer to this question:

Proposition 6 (Determinacy horizons for systems with qC = rC = 0): Consider a model

(4) and a variable vt such that qC = rC = 0. Then, under the rule it = ϕEt {vt+h} with

(ϕ, h) ∈ R× Z:
(a) if q = δ, then HD = Z;
(b) if q ≤ δ − 1 (resp. q ≥ δ + 1), then: (i) HD is bounded above (resp. below); (ii) if q − δ
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Figure 4: Determinacy status for Models 3-5 and Rules 1-2

b Determinacy b Multiplicity b Explosiveness

is odd and Amin ⊂ C \ {−1, 1}, then HD is bounded below (resp. above); (iii) if q = δ − 1

(resp. q = δ + 1) and Amin ∈ {{−1}, {1}}, then HD is unbounded below (resp. above).

Proof : See Appendix A.8. ■

Points (a) and (b)(i) of this proposition straightforwardly follow from Points (a), (c)(iii), and

(d)(iii) of Proposition 5. Point (a) of Proposition 6 is illustrated in the top four panels of Figure

4, while Point (b)(i) of Proposition 6 is illustrated in the two panels of Figure 2 and the bottom

left panel of Figure 4.
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Point (b)(ii) of Proposition 6 states a su�cient condition for the absence of a D region either in

the left tail of the left panel of Figure 3, or in the right tail of the right panel of Figure 3. This

point generalizes, along several dimensions, Point (b) of Proposition 4. Under the condition

stated in this point, as |ϕ| crosses ϕ, an even number of roots of P (z) cross C; in order to get

determinacy, however, we would need an odd number of them. For |h| su�ciently large, if no |ϕ|
in the neighborhood of ϕ can ensure determinacy, then more generally no |ϕ| ∈ R+ can ensure

determinacy. So, the determinacy status jumps directly from multiplicity to explosiveness, or

vice-versa, as |ϕ| goes from zero to in�nity. Under the condition stated in this point, thus,

a su�ciently backward- or forward-looking stabilization policy will necessarily fail to deliver

determinacy, no matter how strongly or weakly the policy instrument reacts to the state of the

economy. This point is, again, illustrated in the right panel of Figure 2.

Finally, Point (b)(iii) of Proposition 6 states a su�cient condition for the existence of an un-

bounded D region either in the left tail of the left panel of Figure 3, or in the right tail of

the right panel of Figure 3. This point generalizes Point (a) of Proposition 3 and Point (b)

of Proposition 4. Under the condition stated in this point, as |ϕ| crosses ϕ, we need exactly

one root of P (z) to cross C in order to get determinacy, and we do get exactly one such root

(for all horizons if Amin = {1}, and for every other horizon if Amin = {−1}). We also need

this root to cross C in the right direction, and the root does so for h or −h su�ciently large

(depending on the sign of q − δ). Thus, when a policy-instrument peg generates multiplicity

(resp. explosiveness), the rule can be arbitrarily backward-looking (resp. forward-looking) and

still ensure determinacy; as we know from Points (c)(ii) and (d)(ii) of Proposition 5, however,

the set of values for ϕ leading to determinacy gradually shrinks to the empty set as h → −∞
(resp. h → +∞). These results are illustrated in the left panel of Figure 2 and the bottom left

panel of Figure 4.

3.5 Taylor principle

Finally, I investigate the validity of the Taylor principle as a condition for determinacy. I start

by providing a formal, general de�nition of Woodford's (2001, 2003) long-run Taylor principle.

Woodford (2001, 2003) mostly describes this principle in the speci�c context of the basic New

Keynesian model with several alternative parametric families of interest-rate rules. He discusses

how to generalize this principle to a broader context as follows: �One observes quite generally

− in the case of any family of policy rules that involve feedback only from in�ation and output,

regardless of how many lags of these might be involved − that the boundary between sets of

coe�cients that satisfy the Taylor principle and those that do not will consist of coe�cients for

which there is an eigenvalue exactly equal to 1. (...) It follows that a real eigenvalue crosses

the unit circle as the sign of the inequality corresponding to the Taylor principle changes. This

boundary is therefore one at which the number of unstable eigenvalues increases by one. Often

this results in moving from a situation of indeterminacy to determinacy, though I do not seek to
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establish general conditions for this� (Woodford, 2003, Chapter 4, Page 256, Footnote 27).

The system (4)-(5) has an eigenvalue equal to 1 if and only if P (1) = 0. If R(1) = 0, then P (1)

does not depend on the coe�cient ϕ. Alternatively, if R(1) ̸= 0, then P (1) = 0 if and only

if ϕ = ϕW := −Q(1)/R(1) (where again the subscript W stands for �Woodford�). In all the

examples considered by Woodford (2001, 2003), ϕW is non-negative and the Taylor principle

is ϕ > ϕW , not ϕ < ϕW (i.e., the policy instrument should react to the variable su�ciently

strongly, not su�ciently weakly). So, I propose the following de�nition of the Taylor principle:

De�nition 1 (Taylor principle): If R(1) ̸= 0 and ϕW := −Q(1)/R(1) ≥ 0, then the Taylor

principle is ϕ > ϕW .

This de�nition is a generalization of the de�nition considered in Section 2. The latter de�nition

was tailored to the speci�c context of the basic New Keynesian model. Both de�nitions lead to

the same Taylor principle in this model: ϕ > 1 for Rule 1, and ϕ > κ/(1 − β) for Rule 2. The

de�nition in Section 2 referred to the permanent reaction of the interest rate to a permanent

change in in�ation; the eigenvalue 1 in Woodford's quote and the root 1 of P (z) capture these

long-run changes. The advantage of De�nition 1 is that it applies not just to the basic New

Keynesian model with in�ation or output in the interest-rate rule, but more generally to any

stabilization-policy model and any variable vt in the policy-instrument rule − as long as ϕW

exists and is non-negative. In fact, in the literature, one can already come across De�nition

1's Taylor principle outside the context of the basic New Keynesian model: the �income-risk

augmented Taylor principle� of Acharya and Dogra (2020) and the �HANK Taylor principle� of

Bilbiie (2021), for instance, coincide with De�nition 1's Taylor principle (as long as ϕW ≥ 0).

The condition that ϕW should exist and be non-negative is, of course, not always met. The

system (Model 5, Rule 2), for instance, is such that ϕW does not exist, since R(1) = 0 in this

system (as discussed in Subsection 3.3). The systems (Model 3, Rule 1) and (Model 3, Rule

2) are such that ϕW exists but is negative; in this case, whether the Taylor principle should

be de�ned as ϕ > ϕW or ϕ < ϕW is unclear. These three systems correspond to the top left,

top right, and bottom right panels of Figure 4; so, ϕW does not appear in these panels. I have

featured ϕW in the other panels of this �gure.

Let Amax := argmaxz∈C |Q(z)/R(z)|. I can now state the results about the Taylor principle as

follows:

Proposition 7 (Taylor principle for systems with qC = rC = 0): Consider a model (4)

and a variable vt such that qC = rC = 0 and ϕW > 0. Let h∗∗ := m+R′(1)/R(1)−Q′(1)/Q(1).

Then, under the rule it = ϕEt {vt+h} with (ϕ, h) ∈ R+ × Z:
(a) if q ̸= δ, then ∀h ∈ Z \HD, the Taylor principle is irrelevant for D;

(b) if q = δ, then ∀h ∈ Z, the Taylor principle is not necessary for D;

25



(c) ∀h ∈ Z \ {h∗}, the Taylor principle is not su�cient for D;

(d) if Amax = {1}, then: (i) ϕW = ϕ̄, (ii) ∀h ≤ h∗ − 1, the Taylor principle is su�cient for E,

(iii) for h = h∗, it is su�cient for D, (iv) ∀h ≥ h∗ + 1, it is su�cient for M ;

(e) if Amin = {1}, then: (i) ϕW = ϕ, (ii) ∀h ∈ Z, the Taylor principle is locally necessary and

su�cient for D if and only if (q = δ − 1 and h < h∗∗) or (q = δ + 1 and h > h∗∗).

Proof : See Appendix A.9. ■

Points (a)-(d) of this proposition straightforwardly follow from the de�nition of HD and Points

(a)-(b) of Proposition 5. Point (d) of Proposition 7, in particular, is illustrated in the right panel

of Figure 2 and the middle two panels of Figure 4.

Point (e) of Proposition 7 states the necessary and su�cient condition for the Taylor principle

to be locally necessary and su�cient for determinacy when ϕW = ϕ. This point generalizes

Point (c) of Proposition 3 and Point (f) of Proposition 4. If q = δ− 1 (resp. q = δ+1), then, as

ϕ crosses ϕW = ϕ from below, we need exactly one root of P (z) to go from outside to inside C
(resp. from inside to outside C) in order to get determinacy, and we do get exactly one such root

if and only if h < h∗∗ (resp. h > h∗∗). Alternatively, if |q − δ| ̸= 1, then we still have exactly

one root of P (z) crossing C as ϕ crosses ϕW = ϕ, but we would need a di�erent number of such

roots in order to get determinacy. This point is illustrated in the left panel of Figure 2 and the

bottom left panel of Figure 4.

Points (d)-(e) of Proposition 7 focus on the cases in which ϕW ∈ {ϕ, ϕ̄}. However, the case

in which ϕW ∈ (ϕ, ϕ̄) may also arise; the system (Model 2, Rule 2) is one example (�gure not

shown).

4 Determinacy analysis for non-regular systems

In this section, I consider the same class of models and the same class of rules as in the previous

section, and I extend the analysis to non-regular systems, i.e. systems with either qC ≥ 1 or

rC ≥ 1. I highlight which results do not change and which ones do, and how and why, as we

move from regular to non-regular systems.

4.1 Sources of non-regularity

I start with a brief discussion of the sources of non-regularity. To that aim, and also to illustrate

the results that I will obtain for non-regular systems, I consider, in addition to Rules 1 and 2, four

other simple interest-rate rules. The overall six rules are presented in Table 2. Consistently with

the analysis so far, they make the interest rate react to only one variable (or linear combination

of variables), at horizon h and with coe�cient ϕ. I will consider policy-instrument rules with

several variables, or with policy-instrument inertia, in Section 5.
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Table 2: Six simple interest-rate rules

No. Rule Variable in the rule

1 it = ϕEt{πt+h} In�ation
2 it = ϕEt{yt+h} Real Output
3 it = ϕEt{∆yt+h} Real-Output Growth
4 it = ϕEt{pt+h} Price Level
5 it = ϕEt{pt+h + yt+h} Nominal Output
6 it = ϕEt{πt+h +∆yt+h} Nominal-Output Growth

The six variables in the six rules are standard in the monetary-policy literature. Rules 1 and

2 are the rules I considered in the previous sections; they involve in�ation and (real) output

respectively, and can be viewed as special cases of what are often called (backward-, current-,

or forward-looking) �Taylor rules,� after Taylor (1993). Rule 4 involves the price level (denoted

by pt at date t), and corresponds to what Woodford (2003) calls the �Wicksellian rule,� after

Wicksell (1898). Rule 5 involves nominal output; like in�ation and the price level, nominal

output is a variable that has a long history as a candidate target for monetary policy. Note that

the variables in Rules 1, 3, and 6 are the �rst di�erences of the variables in Rules 4, 2, and 5

respectively. The question of whether the monetary-policy instrument should react to variables

in levels or in growth rates is a long-standing issue in the literature (see, e.g., McCallum, 1999).

Six models times six rules makes thirty-six systems. Table 3 displays the values of qC and rC for

these systems. More than half of them are non-regular.

Table 3: qC and rC for Models 1-6 and Rules 1-6

Model
Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6

qC rC qC rC qC rC qC rC qC rC qC rC

1 0 0 0 0 0 1 1 0 1 0 0 0
2 0 0 0 0 0 1 1 0 1 0 0 0
3 0 0 0 0 0 1 1 0 1 0 0 0
4 0 0 0 0 0 1 1 0 1 0 0 0
5 0 0 0 1 0 2 1 0 1 2 0 2
6 0 3 0 4 0 5 1 3 1 3 0 3

Note: When qC = 1, the root of Q(z) on C is 1. When rC ≥ 1, the set of roots of R(z) on C, coun-
ting multiplicity, is {1}, {1, 1}, {0.8 + 0.6i, 0.8− 0.6i}, {−1, i,−i}, {1,−1, i,−i}, or {1, 1,−1, i,−i}.

Systems with rC ≥ 1 can obtain under several alternative circumstances. First, R(z) is a multiple

of 1− z (implying R(1) = 0 and rC ≥ 1) when the rule makes the policy instrument react to a

variable in �rst di�erence, rather than in level. For instance, all the systems (Model j, Rule 3)

for j ∈ {1, ...6} are of that kind, as Rule 3 makes the interest rate react to the output growth

rate, rather than the output level like Rule 2. In particular, in the basic New Keynesian model

considered in Section 2 (whose calibrated version is Model 1), we had R(z) = (z − β)/σ under

Rule 2; under Rule 3, we have R(z) = (1 − z)(z − β)/σ, and hence R(1) = 0 and rC = 1.
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Second, in monetary-policy contexts, R(z) is also a multiple of 1 − z under Rule 2 when the

long-run Phillips curve is vertical, as in Models 5-6. In particular, in the model of Svensson

(1997) and Ball (1999) described in Section 3 (whose calibrated version is Model 5), we have

R(z) = (1− z)µ/χ under Rule 2, and hence R(1) = 0 and rC = 1.

Third, R(z) is a multiple of
∑T−1

k=0 zk with T ≥ 2 (implying rC ≥ 1) when the structural

equations involve the average value of the policy instrument over T dates, rather than the

policy instrument at a single date. For instance, in the model of Rudebusch and Svensson

(1999) described in Section 3 (whose estimated version is Model 6), the IS equation involves the

term (1/4)
∑4

k=1 it−k, which can be interpreted as an ex-post medium-term interest rate; as a

result, for any interest-rate rule, R(z) is a multiple of
∑3

k=0 z
k, so R(−1) = R(−i) = R(i) = 0

and rC ≥ 3. Fourth, and relatedly, R(z) is also a multiple of
∑T−1

k=0 zk with T ≥ 2 when the

variable vt in the rule is an average over T dates − like, e.g., four-quarter average in�ation in

Levin et al. (1999, 2003) and Levin and Williams (2003), or twelve-quarter average in�ation in

Taylor and Williams (2011).

Systems with qC ≥ 1, in monetary-policy contexts, typically obtain when the structural equations

involve the in�ation rate but not the price level per se (as in Models 1-6), while the interest-rate

rule involves the price level but not the in�ation rate (like Rules 4-5). In this case, the dynamic

equation has typically to be expressed in terms of the price level, not the in�ation rate, and

Q(z) is then a multiple of 1 − z. In the basic New Keynesian model considered in Section 2,

for instance, we had Q(z) = β − (1 + β + κ/σ)z + z2 under Rule 1; under Rule 4, we have

Q(z) = [β − (1 + β + κ/σ)z + z2](z − 1), and hence Q(1) = 0 and qC = 1.

In the following, I distinguish between three kinds of non-regular system: the systems with

qC = 0 and rC ≥ 1, those with qC ≥ 1 and rC = 0, and those with qC ≥ 1 and rC ≥ 1. I

extend the analysis of Section 3 to each kind of non-regular system, and I illustrate the results

with determinacy-status �gures for some of the thirty-six systems (selected for their illustrative

value). I focus again on positive values of ϕ in these �gures, for consistency with the theoretical

and empirical literatures.

4.2 Systems with qC = 0 and rC ≥ 1

I start with the case in which qC = 0 and rC ≥ 1. I have mentioned above four alternative

circumstances under which this case may arise; under two of them, we typically get, more

speci�cally, rC = 1 and R(1) = 0; so, I will pay particular attention to this subcase. I obtain

the following results:

Proposition 8 (Determinacy status, determinacy horizons, and Taylor principle for

systems with qC = 0 and rC ≥ 1): Consider a model (4) and a variable vt such that qC = 0

and rC ≥ 1. Let ϕ := minz∈C |Q(z)/R(z)|, h∗ := m+ r− δ, and h̄∗ := h∗+ rC. Then there exists
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ϕ̄ > 0 such that, under the rule it = ϕEt {vt+h} with (ϕ, h) ∈ R × Z, Points (a) and (c)-(d) of

Proposition 5 still hold and:

(b1) ∀ |ϕ| > ϕ̄, (i) ∀h ≤ h∗ − 1, S(ϕ, h) = E, (ii) ∀h ∈ {h∗, ..., h̄∗}, S(ϕ, h) may depend on ϕ

only through the sign of ϕ, (iii) ∀h ≥ h̄∗ + 1, S(ϕ, h) = M ;

(b2) if rC = 1 and R(1) = 0, then: (i) if Q(1)R′(1) > 0 then ∀ϕ > ϕ̄, (S(ϕ, h∗), S(ϕ, h̄∗)) =

(E,D) and (S(−ϕ, h∗), S(−ϕ, h̄∗)) = (D,M), (ii) if Q(1)R′(1) < 0 then ∀ϕ > ϕ̄, (S(ϕ, h∗),

S(ϕ, h̄∗)) = (D,M) and (S(−ϕ, h∗), S(−ϕ, h̄∗)) = (E,D).

In addition, Points (a)-(b) of Proposition 6 still hold and, if R(1) ̸= 0 and ϕW > 0, Points

(a)-(b) and (e) of Proposition 7 still hold as well.

Proof : See Appendix A.10. ■

The determinacy-status results stated in Proposition 8 are diagrammatically summarized in

Figure 5. There are two changes relatively to Proposition 5 and Figure 3. First, ϕ̄ is no longer

de�ned as maxz∈C |Q(z)/R(z)|, since this maximum no longer exists (as R(z) has at least one

root on C). Proposition 8 does not provide any expression for the new ϕ̄. To highlight this

change, I represent the horizontal line ϕ = ϕ̄ as a dotted line in Figure 5, rather than a dashed

line (as in Figure 3). The second change is that for |ϕ| > ϕ̄, the single horizon h∗ that led to

determinacy, in Point (b) of Proposition 5, has been replaced, in Points (b1)-(b2) of Proposition

8, by a range of rC + 1 horizons {h∗, ..., h̄∗} that may or may not lead to determinacy. As

|ϕ| → +∞, some roots of P (z) converge to the rC roots of R(z) on C; some may converge from

inside C, others from outside; hence the range of horizons {h∗, ..., h̄∗} for which we may or may

not get determinacy.

Figure 5: Determinacy status for systems with qC = 0 and rC ≥ 1

b Det. b Mult. b Expl. Partially characterized in Prop. 8 Not characterized in Prop. 8

As far as determinacy horizons are concerned, there is no change relatively to Proposition 6.

The reason is that whether the set HD is bounded or not, either below or above, only depends

on the properties of the system for |ϕ| in the neighborhood of ϕ, and these properties do not

depend on whether rC = 0 or rC ≥ 1. Similarly, regarding the Taylor principle, Points (a)-(b)
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and (e) of Proposition 7 still hold because they only rest on the properties of the system for |ϕ|
lower than ϕ or in the neighborhood of ϕ, and these properties do not depend on whether rC = 0

or rC ≥ 1. Points (c)-(d) of Proposition 7, on the contrary, no longer hold. The reason is that

these points rest on the properties of the system for |ϕ| higher than ϕ̄ or in the neighborhood of

ϕ̄, and these properties have changed. Instead of Points (c)-(d) of Proposition 7, we now have

that the Taylor principle is not su�cient for any h ∈ Z \ {h∗, ..., h̄∗} and that, if rC = 1 and

R(1) = 0, it is not su�cient either for h = h∗ (if Q(1)R′(1) > 0) or for h = h̄∗ (if Q(1)R′(1) < 0).

These results are not stated explicitly in Proposition 8, but follow straightforwardly from Points

(b1)-(b2) of this proposition.

Proposition 8 is illustrated in the bottom right panel of Figure 4 and the six panels of Figure

6. The latter �gure shows the determinacy status for the systems (Model j, Rule 3) with

j ∈ {1, ..., 6}. In all these seven panels, I do not draw any horizontal line ϕ = ϕ̄ because I have

no expression for ϕ̄; and I cannot feature ϕW because it does not exist (since R(1) = 0).

In the bottom right panel of Figure 4 and the top four panels of Figure 6, we have rC = 1

and R(1) = 0. So, Point (b2) of Proposition 8 applies, and there is a single horizon at which

determinacy obtains for a su�ciently high coe�cient ϕ. In the bottom left panel of Figure 6,

we have rC = 2 and we get a single such horizon too. In the bottom right panel, we have rC = 5

and we get no such horizon.

Now consider the set of horizons delivering determinacy for at least one non-negative value of

the coe�cient ϕ: H+
D := {h ∈ Z|∃ϕ ∈ R+, S(ϕ, h) = D}, which is a subset of HD. In the bottom

right panels of Figures 4 and 6, this set is bounded below and above as a consequence of Points

(b)(i) and (b)(ii) of Proposition 6; the latter point applies because Amin ⊂ C \ {−1, 1} in these

panels. In the top two panels (resp. the bottom left panel) of Figure 6, H+
D is bounded above

(resp. below) as a result of Point (b)(i) of Proposition 6. We have Amin = {−1} in these panels,

so Point (b)(iii) of Proposition 6 applies, and H+
D is unbounded below (resp. above) − although

this result is not visible in some panels, due to their scale. In the middle two panels of Figure

6, the set H+
D is simply Z, as a result of Point (a) of Proposition 5.

Interestingly, there does not seem to be any determinacy region at all in the bottom right panel

of Figure 6. For this system, I get no apparent determinacy region also when the coe�cient ϕ

is negative (�gure not shown). So, Rule 3 apparently fails to ensure determinacy for any ϕ ∈ R
and any h ∈ Z in the realm of Model 6. The same result obtains for Rule 2 (�gure not shown).

4.3 Systems with qC ≥ 1 and rC = 0

I now turn to the case in which qC ≥ 1 and rC = 0. In Subsection 4.1, I have mentioned only one

circumstance under which this case may arise; under this circumstance, we get more speci�cally

qC = 1 and Q(1) = 0; so, I will pay particular attention to this subcase. Let me �rst de�ne

two new variables, S+ and S−, as follows: if there exists a function ε : Z → R+ \ {0} such that

30



Figure 6: Determinacy status for Models 1-6 and Rule 3

b Determinacy b Multiplicity b Explosiveness

S(ϕ, h) is constant on {(ϕ, h)|h ∈ Z, ϕ ∈ (0, ε(h))} (resp. {(ϕ, h)|h ∈ Z, ϕ ∈ (−ε(h), 0)}), then
S+ (resp. S−) takes this constant value; otherwise, S+ (resp. S−) takes the value NA (for �not

available�). I can now state the results in the following way:

Proposition 9 (Determinacy status, determinacy horizons, and Taylor principle for

systems with qC ≥ 1 and rC = 0): Consider a model (4) and a variable vt such that qC ≥ 1 and

rC = 0. Let ϕ := minz∈C |Q(z)/R(z)| = 0 and ϕ̄ := maxz∈C |Q(z)/R(z)|. Then, under the rule

it = ϕEt {vt+h} with (ϕ, h) ∈ R×Z, Points (b), (c)(i), (c)(ii), (d)(i), and (d)(ii) of Proposition
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5 and Points (c)-(d) of Proposition 7 still hold. In addition, if qC = 1 and Q(1) = 0, then:

(e1) if q ≤ δ − 2, then (S+, S−) = (M,M);

(e2) if q = δ − 1 and Q′(1)R(1) > 0 (resp. < 0), then (S+, S−) = (D,M) (resp. (M,D));

(e3) if q = δ and Q′(1)R(1) > 0 (resp. < 0), then (S+, S−) = (E,D) (resp. (D,E));

(e4) if q ≥ δ + 1, then (S+, S−) = (E,E);

(e5) if q ∈ {δ − 1, δ}, then HD = Z;
(e6) (i) ϕW = 0, (ii) ∀h ∈ Z, the Taylor principle is locally necessary and su�cient for D if and

only if (q = δ − 1 and Q′(1)R(1) > 0) or (q = δ and Q′(1)R(1) < 0).

Proof : See Appendix A.13. ■

Proposition 9 is partly summarized in diagrammatic form in Figure 7. The changes, relatively

to Proposition 5 and Figure 3, are due to the fact that now ϕ := minz∈C |Q(z)/R(z)| = 0 (since

Q(z) has at least one root on C). So, the case in which |ϕ| < ϕ can no longer arise; moreover,

the properties of the system for |ϕ| just above ϕ are modi�ed.

Figure 7: Determinacy status for systems with qC ≥ 1 and rC = 0

b Det. b Mult. b Expl. Partially characterized in Prop. 9 Not characterized in Prop. 9

Points (e5)-(e6) of Proposition 9, about the determinacy horizons and the Taylor principle, are

a straightforward consequence of Points (e1)-(e4) of this proposition. In turn, the latter points

can be understood as follows. If qC = 1 and Q(1) = 0, then moving from ϕ = 0 to ϕ ̸= 0

moves a root of P (z) from the point 1 on C to inside or outside C. So, we get determinacy if

we were missing one root inside C (i.e. q = δ − 1) and the root leaving C moves inside C (i.e.

Q′(1)R(1)ϕ > 0), or if we had the right number of roots inside C (i.e. q = δ) and the root

leaving C moves outside C (i.e. Q′(1)R(1)ϕ < 0). Alternatively, the determinacy status remains

multiplicity if q ≤ δ − 2, and it remains explosiveness if q ≥ δ + 1.

I illustrate Proposition 9 with Figure 8. This �gure shows the determinacy status for the systems

(Model j, Rule k) with j ∈ {1, 4, 5} and k ∈ {4, 5}. Like previously, I focus on the pseudo half-

plane (h, ϕ) ∈ Z×R+. Unlike previously, however, I use a pseudo-log scale for ϕ on the vertical
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axis rather than a log scale, i.e. I use the scale log(1 + ϕ) instead of log(ϕ), in order to display

the determinacy status in the neighborhood of ϕ = 0.

Figure 8: Determinacy status for Models 1 and 4-5 and Rules 4-5

b Determinacy b Multiplicity b Explosiveness

As reported in Table 3, we have qC ≥ 1 and rC = 0 in all but one panel of Figure 8. The

exception is the bottom right panel, in which qC ≥ 1 and rC ≥ 1; I will study this case in the

next subsection. In the other panels of Figure 8, we have more speci�cally qC = 1 and Q(1) = 0,

so Points (e1)-(e6) of Proposition 9 apply.

The top two panels of Figure 8 illustrate Points (e2) and (e5)-(e6) of Proposition 9: in these

two panels, we have q = δ − 1 and Q′(1)R(1) > 0, so we get determinacy for ϕ just above 0

(S+ = D). Moreover, we get multiplicity for ϕ just below 0 (S− = M , �gure not shown). So,
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the Taylor principle is locally necessary and su�cient for determinacy in Model 1 under Rules

4-5.

The middle two panels of Figure 8 illustrate Point (e3) of Proposition 9: in these two panels,

we have q = δ and Q′(1)R(1) > 0, so we get explosiveness for ϕ just above 0 (S+ = E).

Moreover, we get determinacy for ϕ just below 0 (S− = D, �gure not shown). So, the Taylor

principle is locally necessary and su�cient for explosiveness in Model 4 under Rules 4-5; and it

is locally necessary and su�cient for determinacy in the same model under the �opposite rules�

it = ϕEt{−pt+h} and it = ϕEt{−pt+h − yt+h}.

Finally, the bottom left panel of Figure 8 illustrates Point (e4) of Proposition 9: in this panel, we

have q ≥ δ + 1, so we get explosiveness for ϕ just above 0 (S+ = E). We also get explosiveness

for ϕ just below 0 (S− = E, �gure not shown).

4.4 Systems with qC ≥ 1 and rC ≥ 1

Finally, I consider systems with both qC ≥ 1 and rC ≥ 1. I restrict the analysis to the case

in which Q(z) and R(z) have no common root on C. In the alternative case, P (z) would have

at least one root on C for any (ϕ, h) ∈ R × Z, so the determinacy-status analysis would be

inconclusive. In the light of the discussion in Subsection 4.1, it is anyway unclear how such a

case could arise in the �rst place.

I obtain the following results:

Proposition 10 (Determinacy status, determinacy horizons, and Taylor principle for

systems with qC ≥ 1 and rC ≥ 1): Consider a model (4) and a variable vt such that qC ≥ 1

and rC ≥ 1, with Q(z) and R(z) having no common root on C. Let ϕ := minz∈C |Q(z)/R(z)| = 0.

Then there exists ϕ̄ > 0 such that, under the rule it = ϕEt {vt+h} with (ϕ, h) ∈ R × Z, Points
(c)(i), (c)(ii), (d)(i), and (d)(ii) of Proposition 5 and Points (b1)-(b2) of Proposition 8 still

hold. In addition, if qC = 1 and Q(1) = 0, then Points (e1)-(e6) of Proposition 9 still hold.

Proof : See Appendix A.14. ■

Proposition 10 is essentially a mix of Propositions 8 and 9. It is partly summarized in diagram-

matic form in Figure 9, which is a mix of the top of Figure 5 and the bottom of Figure 7. In

Subsection 4.2, moving from rC = 0 to rC ≥ 1 (and keeping qC = 0) a�ected the properties of

the system for |ϕ| higher than ϕ̄ or in the neighborhood of ϕ̄, not those for |ϕ| below ϕ or in

the neighborhood of ϕ. In Subsection 4.3, on the contrary, moving from qC = 0 to qC ≥ 1 (and

keeping rC = 0) a�ected the latter properties, not the former. In the current subsection, moving

jointly from qC = rC = 0 to qC ≥ 1 and rC ≥ 1 a�ects both types of properties.

Proposition 10 is illustrated in the bottom right panel of Figure 8 and the two panels of Figure
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Figure 9: Determinacy status for systems with qC ≥ 1 and rC ≥ 1

b Det. b Mult. b Expl. Partially characterized in Prop. 10 Not characterized in Prop. 10

10. The latter �gure shows the determinacy status for the systems (Model 6, Rule 4) and (Model

6, Rule 5), again with a pseudo-log scale for ϕ.

In these three panels, we have rC ≥ 2, so Point (b1) of Proposition 8 applies, but not Point (b2).

More speci�cally, in the bottom right panel of Figure 8, we have rC = 2 and we get no horizon

at which determinacy obtains for a su�ciently high coe�cient. In each panel of Figure 10, we

have rC = 3 and we get two such horizons.

In these three panels, we also have qC = 1 and Q(1) = 0, so Points (e1)-(e6) of Proposition 9

apply. More speci�cally, these panels illustrate Point (e4) of Proposition 9: we have q ≥ δ + 1,

so we get explosiveness for ϕ just above 0 (S+ = E). We also get explosiveness for ϕ just below

0 (S− = E, �gure not shown).

Figure 10: Determinacy status for Model 6 and Rules 4-5

b Determinacy b Multiplicity b Explosiveness
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5 Extensions and discussion

In this section, I extend the results of the previous sections to rules involving several variables

and to inertial rules, and I discuss some possible applications of the results of the paper.

5.1 Extension to rules with several variables

I start with rules involving several variables. The rules I have considered so far were of type (5).

This type of rule involves a single variable vt, associated with a single coe�cient ϕ and a single

horizon h (even though vt can itself be de�ned as a linear combination of several variables). I

now consider, in addition to vt, some variables (v1,t, ..., vJ,t) associated with some coe�cients

(ϕ1, ..., ϕJ) ∈ (R \ {0})J and some horizons (h1, ..., hJ) ∈ ZJ , where J ∈ N \ {0}. I show how

to address the same questions as previously, about the determinacy status, the determinacy

horizons, and the Taylor principle, still conditionally on the values of ϕ and h, but this time for

the rule

it = ϕEt {vt+h}+
J∑

j=1

ϕjEt

{
vj,t+hj

}
(7)

instead of Rule (5). To do that, one can simply move the new term
∑J

j=1 ϕjEt{vj,t+hj
} out of

the rule and into the structural equations, and then apply the previous results to the resulting

�structural equations� and Rule (5). The outcome will, of course, partly depend on the new

�structural equations.� In general, these equations may not lead to the same determinacy status

under a policy-instrument peg as the original structural equations. If (ϕ1, ..., ϕJ) are su�ciently

small, however, they will, and the values of ϕ and ϕ̄ under Rule (7) will not be far away from

their values under Rule (5). In the following, I will be more speci�c, quantitatively speaking,

about what I mean by �su�ciently small� and �not far away.�

For any j ∈ {1, ..., J}, let mj , Rj(z), and ϕ
j
denote the counterparts of m, R(z), and ϕ for

variable vj,t instead of variable vt. Let g := max[0,maxj∈{1,...,J}(hj−mj)]. I obtain the following

results:

Proposition 11 (Determinacy status, determinacy horizons, and Taylor principle

under a rule with several variables): Consider a model (4), some variables (vt, v1,t, ..., vJ,t),

some coe�cients (ϕ, ϕ1, ..., ϕJ) ∈ R × (R \ {0})J , and some horizons (h, h1, ..., hJ) ∈ ZJ+1,

where J ∈ N \ {0}. Then, Propositions 5-10 still hold for Rule (7) instead of Rule (5), if δ,

m, and Q(z) are respectively replaced by δ + g, m + g, and zg[Q(z) +
∑J

j=1 ϕjRj(z)z
mj−hj ] in

these propositions. In addition, if the system composed of Model (4) and Rule (5) is regular and∑J
j=1 |ϕj | /ϕj

< 1, then, as we move from Rule (5) to Rule (7):

(a) the system remains regular and the determinacy status for ϕ = 0 is unchanged;

(b) ϕ is multiplied by a factor not lower than 1−
∑J

j=1 |ϕj | /ϕj
;

(c) ϕ̄ is multiplied by a factor not higher than 1 +
∑J

j=1 |ϕj | /ϕj
.
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Proof : See Appendix A.15. ■

The condition
∑J

j=1 |ϕj | /ϕj
< 1, in this proposition, characterizes the size of a neighborhood

of (ϕ1, ..., ϕJ) = (0, ..., 0) within which the determinacy-status results are similar under Rule (5)

and under Rule (7), in the sense that these results are described by the same panel of Figure 3

under the two rules (Point (a) of Proposition 11). Under this condition, moreover, the values

of ϕ and ϕ̄ under Rule (7) lie in a neighborhood of their values under Rule (5); the size of this

neighborhood is speci�ed in Points (b)-(c) of Proposition 11.

5.2 Extension to inertial rules

I now turn to inertial rules, i.e. rules making the current policy instrument react to its past

values in addition to a variable at horizon h with coe�cient ϕ:

ρ(L)it = ϕEt {vt+h} , (8)

where ϕ ∈ R, h ∈ Z, and ρ(z) ∈ R[z] with ρ(0) ̸= 0. I obtain the following proposition:

Proposition 12 (Determinacy status, determinacy horizons, and Taylor principle

under an inertial rule): Consider a model (4) and a variable vt. Then, Propositions 5-10

still hold for Rule (8) instead of Rule (5) and for ϕ ̸= 0, if Q(z) is replaced by Q(z)ρ(z) in these

propositions.

Proof : See Appendix A.16. ■

In essence, this proposition says that adding some inertia to a rule (i.e. replacing it by ρ(L)it

in the rule) simply amounts to adding the same inertia to the dynamic system under a policy-

instrument peg (i.e. replacing Q(z) by Q(z)ρ(z)).

Consider, for instance, a regular system with a non-inertial rule, and add some inertia to the

rule (i.e. replace it by ρ(L)it in the rule). I distinguish between three alternative cases. First,

ρ(z) may have all its roots outside C. In this case, the new system is also regular, q− δ does not

change, and the determinacy status under the new rule is diagrammatically represented by the

same panel of Figure 3 as the determinacy status under the original rule. Second, ρ(z) may have

at least one root inside C (i.e. the new rule may be �superinertial� in the sense of Woodford,

2003, Chapter 8, and Giannoni and Woodford, 2002), while still having no root on C. In that

case, q− δ increases by the number of inside roots of ρ(z), and we may move from the left panel

of Figure 3 to its middle or right panel, or from its middle panel to its right panel. Third, ρ(z)

may have at least one root on C. In that case, qC increases by the number of roots of ρ(z) on

C; so, the new system is non-regular, and we move from a panel of Figure 3 to Figure 7. In
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particular, when ρ(z) = 1− z (i.e. when the new rule is a ��rst-di�erence rule�), we get qC = 1

and Q(1) = 0; so, Points (e1)-(e6) of Proposition 9 apply.

Proposition 12 can be used to design a rule that makes the set of determinacy horizons HD

unbounded below and above in models with q ≤ δ − 1. In these models, under the non-inertial

rule (5), HD is bounded above (as shown in Point (b)(i) of Proposition 6) and may be bounded

below (as shown in Point (b)(ii) of Proposition 6) if the system is regular. To enlarge HD (for

instance, in order to ensure determinacy in the presence of inside lags), the policymaker can

adopt a superinertial rule (8) with exactly δ− q roots of ρ(z) inside C. Replacing Rule (5) with

this rule moves us from the left to the middle panel of Figure 3, and makes HD unbounded below

and above. Thus, with a degree of superinertia equal to the dimension of multiplicity under a peg

(δ−q) and with a su�ciently small coe�cient ϕ in absolute value, Rule (8) ensures determinacy

for any horizon h. This result echoes, and sheds light on, a result obtained by Woodford (2003,

Chapter 8) and Giannoni and Woodford (2002, 2003, 2005) about the degree of superinertia of

their �robustly optimal rules,� which they �nd is equal to the degree of multiplicity under a peg.

Alternatively, for models with q ≥ δ, Proposition 12 implies that any superinertial rule with a

su�ciently small coe�cient ϕ in absolute value will necessarily lead to explosiveness (again, if

the system is regular). In e�ect, replacing the non-inertial rule (5) with a superinertial rule (8)

moves us from the middle to the right panel of Figure 3 (for a model with q = δ), or keeps us

in the right panel of Figure 3 (for a model with q ≥ δ + 1). This result o�ers an explanation

for the propensity of superinertial rules to generate explosiveness in backward-looking models

(Rudebusch and Svensson, 1999, and Levin and Williams, 2003).

5.3 Discussion about applications

I now brie�y discuss four di�erent ways to apply the results I have established in this paper.

First, the results can be used to shed light on the determinacy implications, in a broad class of

models, of a given speci�c policy. Consider, for example, the average-in�ation-targeting strategy

adopted by the Federal Reserve in 2020. There are at least two di�erent ways to interpret and

formalize this strategy (see, e.g., Arias et al., 2020, and Mester, 2021). One way is to consider

a rule making the interest rate react to the average of in�ation over several dates, e.g. Rule

(5) with vt =
∑K

k=0 πt−k, where K ∈ N \ {0} (as long as the zero lower bound on nominal

interest rates is not binding, of course). Under this rule, R(z) is a multiple of
∑K

k=0 z
k, so

rC ≥ K ≥ 1; therefore, in any model with qC = 0, the determinacy status, as a function of ϕ

and h, is characterized by Proposition 8 and Figure 5.

Another way to interpret and formalize this strategy is to consider a rule making the interest

rate react to the price level, e.g. Rule (5) with vt = pt (again, as long as the zero lower bound on

nominal interest rates is not binding). Under that rule, in any model that involves the in�ation

rate but not the price level per se, we have qC ≥ 1; so, the determinacy status is characterized
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by Proposition 9 and Figure 7, or by Proposition 10 and Figure 9. Thus, the determinacy

implications of these two alternative rules − the one involving average in�ation, and the other

involving the price level − are qualitatively di�erent, at least for |ϕ| su�ciently small or large. As

Proposition 12 implies, moreover, this conclusion is unchanged when the two rules are inertial,

i.e. when they are of type (8) instead of (5), provided that ρ(z) has no roots on C.

Second, my general results provide guidelines for �nding rules with robust determinacy properties

across alternative models. For example, if a variable vt leads to rC = 0 in all the models

considered and to the same h∗ across these models, then Rule (5) with h = h∗ and |ϕ| su�ciently

large will deliver determinacy in all the models (Propositions 5 and 9). As another example,

a Wicksellian rule with a su�ciently small positive coe�cient ϕ on the price level, regardless

of the horizon h, will deliver determinacy in all the models that: (i) involve the in�ation rate

but not the price level per se, and (ii) are such that (q = δ − 1 and Q′(1)R(1) > 0) or (q = δ

and Q′(1)R(1) < 0) (Propositions 9-10). As still another example, if all the models considered

share the same negative value of q − δ and are such that qC = 0, then an inertial rule (8) with

exactly δ− q roots of ρ(z) inside C and with |ϕ| su�ciently small will deliver determinacy in all

the models (Proposition 12).

Research on the robustness of interest-rate rules across alternative monetary-policy models has,

over the past ten years, bene�ted from the development of a Macroeconomic Model Data Base

(MMB) described in Wieland et al. (2012, 2016). The MMB Team (2022) writes that �there is

no hard guideline for determinacy� and refers to Levin et al. (2003) for a suggestion of several

characteristics of rules that deliver determinacy. Among these characteristics, which Levin et al.

(2003) identify numerically using �ve calibrated models, are �a relatively short in�ation forecast

horizon� and �a moderate degree of responsiveness to the in�ation forecast.�

Since the �ve models considered in Levin et al. (2003) are such that q ≤ δ−1, Propositions 5 and

12 o�er an explanation of these two characteristics: for h ≥ h∗+1, two necessary conditions for

determinacy are that h should be su�ciently small and that |ϕ| should be between ϕ and ϕ̄, no

matter whether the rule is non-inertial or inertial (provided that ρ(z) has no roots inside or on C).
Moreover, these propositions show that these two characteristics, qualitatively speaking, remain

necessary for determinacy for a broad range of model calibrations (not just the ones considered

in Levin et al., 2003), a broad class of models (not just the �ve models they consider), and a

broad class of variables in the rule (not just in�ation) − in essence, for all the calibrated models

such that q ≤ δ − 1, and all the variables vt that make the system regular.

Like the �ve models considered in Levin et al. (2003), most of the models in the current MMB

version (3.1) are such that q ≤ δ−1, i.e. most of them deliver multiplicity under an interest-rate

peg. Table 4 reports the distribution of q− δ across the 140 rational-expectations models in the

base: 90% of these models are, more speci�cally, such that q = δ−1. Computing the thresholds

ϕ, ϕ̄, h∗, and h∗∗ for various models in the base and various variables in the rule could be helpful
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in the quest for a robust rule.

Table 4: Distribution of q − δ in the Macroeconomic Model Data Base 3.1

Value of q − δ -2 -1 0 1

Number of models 4 126 4 6

Third, although I have illustrated my results only with monetary-policy models, these results

can be applied to any stabilization policy, like �scal policy for instance. Fiscal-policy models

may, however, raise a speci�c di�culty related to Blanchard and Kahn's (1980) no-decoupling

condition, which I discuss in Loisel (2021a). More speci�cally, when the tax-rate rule does not

involve the debt level, the log-linearized dynamic system may have a block-recursive structure

in which the debt level is residually determined and explodes over time (at a rate equal to

the steady-state real interest rate), while we may get determinacy or multiplicity for the other

variables. This di�culty disappears, i.e. the no-decoupling condition is met, as soon as the

tax-rate rule involves the debt level. So, my results can be applied to such models as long as

the variable vt in the rule is the debt level, and the coe�cient ϕ on this variable is non-zero.

Fourth and last, I have so far considered the variable it as the policy instrument, and focused

on policy-instrument rules. However, nothing prevents us from interpreting it as yet another

endogenous variable set by the private sector, instead of a policy instrument. So, the results

obtained could be applied to �targeting rules,� instead of policy-instrument rules. They could also

be applied to structural equations (which describe the behavior of the private sector), instead

of targeting rules or policy-instrument rules (which describe the behavior of a policymaker).

For instance, in a monetary-policy model, the results could be used to �nd conditions on the

structural parameters for the model to deliver determinacy under an interest-rate peg, in order

to solve New Keynesian puzzles and paradoxes at the zero lower bound.

6 Conclusion

This paper has established some simple, necessary or su�cient conditions for determinacy in a

broad class of dynamic rational-expectations models that arguably includes, in particular, most

existing dynamic stochastic general-equilibrium (DSGE) models. These determinacy conditions

are directly about the coe�cients and horizons of the policy-instrument rule, and lead to new,

general principles for stabilization policy. In so doing, the paper has provided new insights into

why a given rule does or does not deliver determinacy in a given model; it has shed light on

various determinacy or indeterminacy results obtained in the literature and sparsely distributed

across models and rules; and it has provided some �rst hard guidelines for �nding rules with

robust determinacy properties across alternative models. The results can be applied to monetary

policy, �scal policy, or any other stabilization policy; I have used them, for instance, to highlight
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the di�erent determinacy implications, in a broad class of models, of di�erent ways to implement

the average-in�ation-targeting strategy adopted by the Federal Reserve in 2020. Overall, the

paper thus opens new horizons for the study of stabilization policy, and paves the way for new

qualitative or quantitative research.
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Appendix

A.1 Proof of Points (c)-(d) of Proposition 1

Point (c). For h ≥ 2, we have ν = h and

P (z) = Q(z)zh−2 +
ϕκ

σ
.

Let zo denote the root of Q(z) in (1,+∞), with the subscript �o� standing for �outside C.�
Consider a Jordan curve Jo surrounding zo and not intersecting nor surrounding C. I apply

Rouché's theorem to J = Jo, Pb(z) = Q(z)zh−2, and Ps(z) = ϕκ/σ. For any |ϕ| ∈ (ϕ, ϕ̄), any

h ≥ h̄ := 2 + max

0,


log
(
ϕ̄κ
σ

)
− log (minz̃∈Jo |Q (z̃)|)

log (minz̃∈Jo |z̃|)


 ,

and any z ∈ Jo, we have∣∣∣Q(z)zh−2
∣∣∣ ≥ min

z̃∈Jo

∣∣∣Q (z̃) z̃h−2
∣∣∣ ≥ (min

z̃∈Jo

|Q (z̃)|
)(

min
z̃∈Jo

|z̃|
)h−2

≥ ϕ̄κ

σ
>

∣∣∣∣ϕκσ
∣∣∣∣ ,

where the last but one inequality follows from the de�nition of h̄. So, Rouché's theorem implies

that P (z) has the same number of roots inside Jo as Q(z)zh−2. The latter polynomial has

exactly one root inside Jo, which is zo. Therefore, P (z) has also exactly one root inside Jo, and

hence at least one root outside C. Since the degree of P (z) is h, we thus get p ≤ h− 1 < h = ν,

and consequently S(ϕ, h) = M for any |ϕ| ∈ (ϕ, ϕ̄) and any h ≥ h̄.

Point (d). For h ≤ 2, we have ν = 2 and

P (z) = Q(z) +
ϕκ

σ
z2−h.

I proceed in four steps. In the �rst step, I show that for any given |ϕ| ∈ (ϕ, ϕ̄), all but one root

of P (z) converge uniformly to C as h → −∞. I get this result by applying Rouché's theorem

twice. Consider an arbitrary ϵ ∈ (0, 1 − zi), where zi denotes the root of Q(z) in (0, 1), with

the subscript �i� standing for �inside C.� For any r ∈ R+, let Cr denote the circle of radius r

centered at the origin of the complex plane (so that in particular C1 = C). I �rst apply Rouché's

theorem to J = C1−ϵ, Pb(z) = Q(z), and Ps(z) = (ϕκ/σ)z2−h. For any |ϕ| ∈ (ϕ, ϕ̄), any

h ≤ h1−ϵ := 2 + min

0,

 log (minz̃∈C1−ϵ |Q (z̃)|
)
− log

(
ϕ̄κ
σ

)
− log (1− ϵ)

 ,

and any z ∈ C1−ϵ, we have

|Q(z)| ≥ min
z̃∈C1−ϵ

|Q (z̃)| ≥ ϕ̄κ

σ
(1− ϵ)2−h >

|ϕ|κ
σ

(1− ϵ)2−h =

∣∣∣∣ϕκσ z2−h

∣∣∣∣ ,
where the second inequality follows from the de�nition of h1−ϵ. So, Rouché's theorem implies

that P (z) has the same number of roots inside C1−ϵ as Q(z). The latter polynomial has exactly
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one root inside C1−ϵ, which is zi. Therefore, P (z) has also exactly one root inside C1−ϵ for any

|ϕ| ∈ (ϕ, ϕ̄) and any h ≤ h1−ϵ.

I then apply Rouché's theorem to J = C1+ϵ, Pb(z) = (ϕκ/σ)z2−h, and Ps(z) = Q(z). For any

|ϕ| ∈ (ϕ, ϕ̄), any

h ≤ h1+ϵ := 2 + min

0,

 log
(
ϕκ

σ

)
− log

(
maxz̃∈C1+ϵ |Q (z̃)|

)
log (1 + ϵ)

 ,

and any z ∈ C1+ϵ, we have∣∣∣∣ϕκσ z2−h

∣∣∣∣ = |ϕ|κ
σ

(1 + ϵ)2−h >
ϕκ

σ
(1 + ϵ)2−h ≥ max

z̃∈C1+ϵ

|Q (z̃)| ≥ |Q(z)| ,

where the last but one inequality follows from the de�nition of h1+ϵ. So, Rouché's theorem

implies that P (z) has the same number of roots inside C1+ϵ as (ϕκ/σ)z2−h. Therefore, P (z) has

exactly 2− h roots inside C1+ϵ for any h ≤ h1+ϵ. Since the degree of P (z) is 2− h when h ≤ 0,

we eventually get that for any |ϕ| ∈ (ϕ, ϕ̄) and any h ≤ min
(
0, h1−ϵ, h1+ϵ

)
, all but one root of

P (z) lie between C1−ϵ and C1+ϵ. We conclude that for any given |ϕ| ∈ (ϕ, ϕ̄), all but one root of

P (z) converge uniformly to C as h → −∞.

In the second step, I show that for any given |ϕ| ∈ (ϕ, ϕ̄), the roots of P (z) uniformly converging

to C as h → −∞ converge in distribution to the uniform distribution on C. This result is a

direct consequence of the following theorem:

Theorem 2 (Erd®s and Turán, 1950): Let P̃ (z) =
∑d

k=0 p̃kz
k ∈ C[z] with p̃0p̃d ̸= 0. Let

φk ∈ [0, 2π) for 1 ≤ k ≤ d denote the angular coordinates of the roots of P̃ (z). For any

0 ≤ α < ᾱ ≤ 2π,

∣∣∣∣# {k ∈ {1, ..., d}|α ≤ φk < ᾱ} −
(
ᾱ− α

2π

)
d

∣∣∣∣ ≤ 16

√√√√d log

(
1√
|p̃0p̃d|

d∑
k=0

|p̃k|

)
.

Proof : See Erd®s and Turán (1950). ■

I apply this theorem to P̃ (z) = P (z). For P̃ (z) = P (z) and h ≤ −1, we have

1√
|p̃0p̃d|

d∑
k=0

|p̃k| = 2 (1 + β) +
κ

σ
(1 + ϕ) .

So, the Erd®s-Turán theorem straightforwardly implies, together with the result of the previous

step, that all but one root of P (z) uniformly converge in distribution to the uniform distribution

on C as h → −∞, for any given |ϕ| ∈ (ϕ, ϕ̄).

In the third step, I show that the number of roots of P (z) inside C grows unboundedly as

h → −∞, for any given |ϕ| ∈ (ϕ, ϕ̄). Since |ϕ| > ϕ, there exists an arc A of C such that ∀z ∈ A,
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|ϕ|κ/σ > |Q(z)|. For any r ∈ R+, let Ar denote the image of A under the homothety whose

center is the origin of the complex plane and whose ratio is r (so that in particular A1 = A). By
continuity, there exists ε ∈ (0, 1) such that |ϕ|κ/σ > |Q(z)| for all z on the Jordan curve J1+ε

made of A, A1+ε, and the two radial line segments joining the endpoints of A and A1+ε (see

Figure A.1). I apply Rouché's theorem to J = J1+ε, Pb(z) = (ϕκ/σ)z2−h, and Ps(z) = Q(z).

For any h ≤ 2 and any z ∈ J1+ε, we have∣∣∣∣ϕκσ z2−h

∣∣∣∣ ≥ |ϕ|κ
σ

> |Q(z)| .

So, Rouché's theorem implies that P (z) has the same number of roots inside J1+ε as (ϕκ/σ)z2−h.

Therefore, P (z) has no roots inside J1+ε for any h ≤ 2. Using the results of the �rst two steps,

we get that the number of roots of P (z) inside the Jordan curve J1−ε made of A1−ε, A, and the

two radial line segments joining the endpoints of A1−ε and A, grows unboundedly as h → −∞.

As a result, p grows unboundedly as h → −∞. Thus, there exists h (|ϕ|) such that p > 2 = ν

and S(ϕ, h) = E for all h ≤ h (|ϕ|).

Figure A.1: Roots of P (z) as h → −∞
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In the fourth step, I just note that for any ε ∈
(
0, ϕ̄− ϕ

)
and any |ϕ| ∈ (ϕ+ ε, ϕ̄), there exists,

by continuity, ℓ(ε) > 0 such that the arc A can be chosen of length higher than ℓ(ε). As a result,

h (|ϕ|) can be chosen a bounded function of |ϕ| for |ϕ| ∈ (ϕ+ ε, ϕ̄).

A.2 Determination of ϕ and ϕ̄ in the basic New Keyn. model under Rule 1

For any z ∈ C, we have

|Q(z)| =
∣∣∣β −

(
1 + β +

κ

σ

)
z + z2

∣∣∣ ≤ β +
(
1 + β +

κ

σ

)
|z|+ |z|2 = 2 (1 + β) +

κ

σ
,

with equality only for z = −1. Therefore, argmaxz∈C |Q(z)| = {−1},maxz∈C |Q(z)| = 2 (1 + β)+

κ/σ, and

ϕ̄ :=
σ

κ
max
z∈C

|Q(z)| = 1 + 2 (1 + β)
σ

κ
.
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For any z = a + ib ∈ C, where (a, b) ∈ [−1, 1]2 and a2 + b2 = 1, some simple algebra leads to

|Q(z)|2 = T1(a), where

T1(a) := 4βa2 − 2 (1 + β)
(
1 + β +

κ

σ

)
a+

[
(1− β)2 +

(
1 + β +

κ

σ

)2]
.

For any a ∈ [−1, 1], we have T ′
1(a) ≤ T ′

1(1) = −2(1 − β)2 − 2(1 + β)κ/σ < 0. So, T1(a) is

decreasing in a over [−1, 1]. Therefore, argmina∈[−1,1] T1(a) = {1}, argminz∈C |Q(z)| = {1},
minz∈C |Q(z)| = κ/σ, and

ϕ :=
σ

κ
min
z∈C

|Q(z)| = 1.

A.3 Determination of ϕ and ϕ̄ in the basic New Keyn. model under Rule 2

For any z = a + ib ∈ C, where (a, b) ∈ [−1, 1]2 and a2 + b2 = 1, some simple algebra leads to

|Q(z)/ (z − β)|2 = T2(a) := T1(a)/(1 + β2 − 2βa), where T1(a) is de�ned in Appendix A.2. We

have T ′
2(a) = T3(a)/(1 + β2 − 2βa)2, where

T3(a) := −8β2a2 + 8β
(
1 + β2

)
a+ 2η

with

η :=

[
(1− β)2 +

(
1 + β +

κ

σ

)2]
β − (1 + β)

(
1 + β2

) (
1 + β +

κ

σ

)
.

For any a ∈ [−1, 1], we have T ′
3(a) ≥ T ′

3(1) = 8β(1− β)2 > 0. So, T3(a) is increasing in a over

[−1, 1]. There are, therefore, three possible alternative cases: (i) T3(−1) > 0, (ii) T3(−1) < 0 <

T3(1), and (iii) T3(1) < 0. In Case (i), T2(a) is increasing in a over [−1, 1]; in Case (ii), T2(a) is

�rst decreasing and then increasing in a over [−1, 1]; and in Case (iii), T2(a) is decreasing in a over

[−1, 1]. In all three cases, argmaxa∈[−1,1] T2(a) ⊂ {−1, 1}, hence argmaxz∈C |Q(z)/ (z − β)| ⊂
{−1, 1}, and therefore

ϕ̄ := σmax
z∈C

∣∣∣∣ Q(z)

z − β

∣∣∣∣ = max

(
κ

1− β
, 2σ +

κ

1 + β

)
.

The double inequality T3(−1) < 0 < T3(1) is equivalent to∣∣η − 4β2
∣∣ < 4β

(
1 + β2

)
. (A.1)

If Condition (A.1) is not met, then we are in Case (i) or (iii), so argmina∈[−1,1] T2(a) ⊂
{−1, 1}, and therefore argminz∈C |Q(z)/ (z − β)| ⊂ {−1, 1}. Alternatively, if Condition (A.1)

is met, then we are in Case (ii), so argmina∈[−1,1] T2(a) = {a∗}, where a∗ := [(1 + β2) −√
(1 + β2)2 + η]/(2β) is the root of T3(a) in [−1, 1], and therefore argminz∈C |Q(z)/ (z − β)| =

{a∗ − i
√
1− a∗2, a∗ + i

√
1− a∗2}. As a consequence,

(A.1) =⇒ ϕ := σmin
z∈C

∣∣∣∣ Q(z)

z − β

∣∣∣∣ = σ√
β

√
(1 + β)

κ

σ
− (1− β)2 + 2

√
(1 + β2)2 + η,

¬(A.1) =⇒ ϕ := σmin
z∈C

∣∣∣∣ Q(z)

z − β

∣∣∣∣ = min

(
κ

1− β
, 2σ +

κ

1 + β

)
.
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A.4 Proof of Proposition 3

The equality ϕW = ϕ stated in Proposition 3 straightforwardly follows from ϕW := 1 (as

explained in the main text) and ϕ = 1 (as shown in Appendix A.2).

Points (b) and (d). Point (b) of Proposition 3 straightforwardly follows from the de�nition

of HD. The �if� part of Point (d) of Proposition 3 is a very well known result whose proof can

be found in, e.g., Woodford (2003, Chapter 4). The �only if� part of Point (d) of Proposition 3

straightforwardly follows from Point (b) of Proposition 1.

Point (c). I start by rewriting P (z) as a function of two variables: P̂ (ϕ, z) := Q(z)zmax(0,h−2)+

(ϕκ/σ)zmax(0,2−h), where (ϕ, z) ∈ R×C. Simple algebra leads to P̂ (1, 1) = 0 and ∂P̂ /∂z(1, 1) =

1−β+(1−h)κ/σ. This last expression is generically non-zero (it can be zero only if (1−β)σ/κ

is an integer, and I ignore this zero-measure case). So, one root of the polynomial P̂ (1, z) is

1, and this root is of multiplicity one. The implicit-function theorem implies the existence of a

continuously di�erentiable function ϕ 7→ Z(ϕ) such that one real root of P (z) can be written as

Z(ϕ) in the neighborhood of ϕ = 1, with Z(1) = 1 and

Z ′(1) =
−∂P̂

∂ϕ (1, 1)

∂P̂
∂z (1, 1)

=
1

h−
[
1 + (1− β)σκ

] .
For any h ∈ {h ∈ Z|h < 1 + (1 − β)σ/κ}, we have Z ′(1) < 0, and therefore the root of P (z)

goes from outside to inside C as ϕ crosses 1 from below. It is the only root that crosses C as ϕ

goes through 1. Indeed, any root z ∈ C having this property must satisfy P̂ (1, z) = 0, which

implies |Q(z)| = κ/σ and hence z = 1 (since minz̃∈C |Q(z̃)| = κ/σ and argminz̃∈C |Q(z̃)| = {1},
as shown in Appendix A.2). So, the number of roots of P (z) inside C increases by exactly one as

ϕ crosses 1 from below. We know from Subsection 2.2 that this number is p = max(1, h−1) < ν

for ϕ just below ϕ = 1 = ϕW . Therefore, we have p = max(2, h) = ν for ϕ just above

ϕ = 1 = ϕW . As a result, the determinacy status moves from M to D as ϕ crosses 1 from

below. Thus, the Taylor principle is locally necessary and su�cient for determinacy for any

h ∈ {h ∈ Z|h < 1 + (1− β)σ/κ}.

Point (a). The result just above straightforwardly implies that {h ∈ Z|h < 1 + (1− β)σ/κ} ⊂
HD. To prove the reverse inclusion, I �rst show that P ′(z) has a real root higher than 1 for any

h > 1+(1−β)σ/κ. If h = 2 > 1+(1−β)σ/κ, then P ′(z) = −(1+β+κ/σ)+2z, the unique root

of P ′(z) is (1+β+κ/σ)/2, and this root is indeed higher than 1. If h ≥ 3 and h > 1+(1−β)σ/κ,

then P ′(z) = zh−3T4(z), where T4(z) := β(h− 2)− (1 + β + κ/σ)(h− 1)z + hz2; moreover, we

have T4(1) = −(κ/σ)h+ 1− β + κ/σ < 0 and limz∈R,z→+∞ T4(z) = +∞; therefore, T4(z) has a

real root above 1, and so has P ′(z). I then use the Gauss-Lucas theorem (�rst proved by Lucas,

1879, but used earlier by Gauss):

Theorem 3 (Gauss-Lucas theorem): For any non-constant P̃ (z) ∈ C[z], all the roots of

P̃ ′(z) belong to the convex hull of the set of roots of P̃ (z).
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Proof : See Henrici (1988, Pages 463-464). ■

Applied to P̃ (z) = P (z), this theorem implies that if P ′(z) has a real root higher than 1, then

P (z) has at least one root outside C. So, for any h > 1+(1−β)σ/κ and any ϕ ∈ R, P (z) has at

least one root outside C, which implies p < dP = max(2, h) = ν (where dP denotes the degree

of P (z)), and hence S(ϕ, h) = M .1 As a result, HD = {h ∈ Z|h < 1 + (1− β)σ/κ}.

A.5 Proof of Proposition 4

Points (a) and (c)-(d). Points (a) and (c) of Proposition 4 straightforwardly follow from,

respectively, Point (c) of Proposition 2 and the de�nition of HD. The �if� part of Point (d) of

Proposition 4 is a very well known result whose proof can be found in, e.g., Woodford (2003,

Chapter 4). The �only if� part of Point (d) of Proposition 4 straightforwardly follows from Point

(b) of Proposition 2.

Point (e). We have ϕW := κ/(1−β) and, as shown in Appendix A.3, ϕ̄ = max[κ/(1−β), 2σ+

κ/(1 + β)]. So, we get ϕW = ϕ̄ if and only if κ/(1− β) ≥ 2σ + κ/(1 + β), that is to say if and

only if κ/σ ≥ (1+β)(1−β)2/β. This result corresponds to Point (e)(i) of Proposition 4. Points

(e)(ii)-(iv) of Proposition 4 straightforwardly follow from Point (b) of Proposition 2.

Point (f). The condition stated in this point is equivalent to the condition T3(1) < 0 in

Appendix A.3. I have shown in Appendix A.3 that Amin := argminz∈C |Q(z)/(z − β)| = {1}
and ϕ = κ/(1−β) if this condition is met, and that 1 /∈ Amin and ϕ ̸= κ/(1−β) if this condition

is not met. This result, together with ϕW := κ/(1−β), corresponds to Point (f)(i) of Proposition

4.

The proof of Point (f)(ii) of Proposition 4 is similar to the proof of Point (c) of Proposition 3 in

Appendix A.4. I rewrite again P (z) as a function of two variables: P̂ (ϕ, z) := Q(z)zmax(0,h−1)+

(ϕ/σ)(z − β)zmax(0,1−h), where (ϕ, z) ∈ R × C. Simple algebra leads to P̂ (ϕW , 1) = 0 and

∂P̂ /∂z(ϕW , 1) = 1− β + [1/(1− β)− h]κ/σ. This last expression is generically non-zero (it can

be zero only if 1/(1−β)+(1−β)σ/κ is an integer, and I ignore this zero-measure case). So, one

root of the polynomial P̂ (ϕW , z) is 1, and this root is of multiplicity one. The implicit-function

theorem implies the existence of a continuously di�erentiable function ϕ 7→ Z(ϕ) such that one

real root of P (z) can be written as Z(ϕ) in the neighborhood of ϕ = ϕW , with Z(ϕW ) = 1 and

Z ′(ϕW ) =
−∂P̂

∂ϕ (ϕW , 1)

∂P̂
∂z (ϕW , 1)

=
1−β
κ

h−
[

1
1−β + (1− β) σ

κ

] .
This root of P (z) crosses C at point 1 as ϕ goes through ϕW . It is the only root that crosses C
as ϕ goes through ϕW . Indeed, any root z ∈ C having this property must satisfy P̂ (ϕW , z) = 0,

1More generally, throughout the Appendix, for any T (z) ∈ R[z], dT denotes the degree of T (z).
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which implies |Q(z)/(z − β)| = κ/[(1 − β)σ] and hence z = 1 (since minz̃∈C |Q(z̃)/(z̃ − β)| =
κ/[(1−β)σ] and argminz̃∈C |Q(z̃)/(z̃ − β)| = {1}, as follows from the analysis in Appendix A.3).

For any h < 1/(1− β) + (1− β)σ/κ, we have Z ′(ϕW ) < 0, and therefore the root of P (z) goes

from outside to inside C as ϕ crosses ϕW from below. So, the number of roots of P (z) inside C
increases by exactly one, from p = max(1, h−1) < ν to p = max(2, h) = ν, and the determinacy

status moves from M to D, as ϕ crosses ϕW from below. Thus, the Taylor principle is locally

necessary and su�cient for determinacy for any h < 1/(1 − β) + (1 − β)σ/κ. Alternatively,

for h > 1/(1 − β) + (1 − β)σ/κ, we have Z ′(ϕW ) > 0; as ϕ crosses ϕW from below, therefore,

the root of P (z) goes this time from inside to outside C, and the determinacy status remains

M . Thus, the Taylor principle is not locally necessary and su�cient for determinacy for any

h > 1/(1− β) + (1− β)σ/κ.

Point (b). The condition stated in this point is the same as Condition (A.1) in Appendix

A.3. I have shown in Appendix A.3 that Amin ⊂ C \ {−1, 1} if this condition is met, and that

Amin ⊂ {−1, 1} if this condition is not met.

Suppose �rst that this condition is met, and hence that Amin ⊂ C \ {−1, 1}. Then, |Q(z)| >
(ϕ/σ) |z − β| for z ∈ {−1, 1}. So, by continuity, there exist ϵ ∈ (0, ϕ̄ − ϕ) and two open arcs

A and A′ of C such that: (i) 1 ∈ A, (ii) −1 ∈ A′, and (iii) ∀ |ϕ| ∈ (ϕ, ϕ + ϵ), ∀z ∈ A ∪ A′,

|Q(z)| > (|ϕ| /σ) |z − β|. For any r ∈ R+, let Ar and A′
r denote respectively the images of A

and A′ under the homothety whose center is the origin of the complex plane and whose ratio

is r (so that in particular A1 = A and A′
1 = A′). In addition, for any r ∈ R+ \ {0}, let Jr

(resp. J ′
r) denote the Jordan curve made of A (resp. A′), Ar (resp. A′

r), and the two radial line

segments joining the endpoints of A (resp. A′) and Ar (resp. A′
r). By continuity, there exists

ε ∈ (0, 1− zi) such that ∀ |ϕ| ∈ (ϕ, ϕ+ ϵ), ∀h ≤ 1, ∀z ∈ J1−ε ∪ J ′
1−ε (see Figure A.2),

|Q(z)| > |ϕ|
σ

|z − β| ≥
∣∣∣∣ϕσ (z − β) z1−h

∣∣∣∣ .
Figure A.2: Jordan curves J1−ε and J ′

1−ε

 

x  

x  

J  ’ଵିఌ 

 

Jଵିఌ 

 

Aଵିఌ 

A 

C 

A ’ଵିఌ 

A ’ 
-1 1 

Cଵିఌ 

Applying Rouché's theorem to Pb(z) = Q(z), Ps(z) = (ϕ/σ)(z − β)z1−h, and (alternatively)
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J1−ε and J ′
1−ε, I obtain that ∀ |ϕ| ∈ (ϕ, ϕ + ϵ), ∀h ≤ 1, P (z) has no root inside J1−ε and no

root inside J ′
1−ε. Therefore, P (z) has no real root between C1−ε and C. Now, we know from

Appendix A.1 that there exists h1−ε ∈ Z such that ∀ |ϕ| ∈ (ϕ, ϕ̄), ∀h ≤ h1−ε, P (z) has exactly

one root inside C1−ε. As a result, ∀ |ϕ| ∈ (ϕ, ϕ + ϵ), ∀h ≤ min(1, h1−ε), P (z) has exactly one

real root inside C, and therefore an odd number p of roots inside C. Since there are ν = 2

non-predetermined variables for any h ≤ 1, we have p ̸= ν, and hence S(ϕ, h) ̸= D, for all

|ϕ| ∈ (ϕ, ϕ + ϵ) and all h ≤ min(1, h1−ε). Together with Point (d) of Proposition 2, this result

implies that HD is bounded below.

Now suppose alternatively that the condition stated in Point (b) of Proposition 4 is not met,

and hence that either η − 4β2 < −4β
(
1 + β2

)
, or η − 4β2 > 4β

(
1 + β2

)
. In the �rst case,

Point (f) of Proposition 4 implies that HD is unbounded below. In the second case, we have

Amin = {−1} and ϕ = 2σ + κ/(1 + β) (as follows from the analysis in Appendix A.3). For

any negative and odd integer h, simple algebra leads to P̂ (ϕ,−1) = 0 and ∂P̂ /∂z(ϕ,−1) =

1 + β + κ/[(1 + β)σ] − [2(1 + β) + κ/σ]h. This last expression is generically non-zero. So, one

root of the polynomial P̂ (ϕ, z) is −1, and this root is of multiplicity one. The implicit-function

theorem implies the existence of a continuously di�erentiable function ϕ 7→ Z(ϕ) such that one

real root of P (z) can be written as Z(ϕ) in the neighborhood of ϕ = ϕ, with Z(ϕ) = −1 and

Z ′(ϕ) =
−∂P̂

∂ϕ (ϕ,−1)

∂P̂
∂z (ϕ,−1)

=
1+β
σ

1 + β + κ
(1+β)σ −

[
2(1 + β) + κ

σ

]
h
.

For any negative and odd integer h, we have Z ′(ϕ) > 0, and therefore the root of P (z) goes

from outside to inside C as ϕ crosses ϕ from below. It is the only root that crosses C as ϕ

goes through ϕ. Indeed, any root z ∈ C having this property must satisfy P̂ (ϕ, z) = 0, which

implies |Q(z)/(z − β)| = 2 + κ/[(1 + β)σ] and hence z = −1 (since minz̃∈C |Q(z̃)/(z̃ − β)| =
2+κ/[(1+β)σ] and argminz̃∈C |Q(z̃)/(z̃ − β)| = {−1}, as follows from the analysis in Appendix

A.3). So, the number of roots of P (z) inside C increases by exactly one, from p = 1 < ν to

p = 2 = ν, and the determinacy status moves from M to D, as ϕ crosses ϕW from below. For

any negative and odd integer h, thus, we get determinacy for ϕ just above ϕ. As a consequence,

HD is unbounded below.

A.6 Proof of Lemma 1

I start with the case of a policy-instrument peg (ϕ = 0). In this case, the dynamic system boils

down to Et{∆(L−1)A(L)Xt} = 0. The characteristic polynomial of this system is the same as

the characteristic polynomial of the corresponding perfect-foresight system. The latter system

is A(L)Xt = 0. Since det[A(0)] ̸= 0, using a standard result in time-series analysis (see, e.g.,

Hamilton, 1994, Proposition 10.1, Page 259), I get that P (z), the reciprocal polynomial of this

characteristic polynomial, is equal to Q(z) := det[A(z)].

Since det[A(0)] ̸= 0, the dynamic system can be rewritten as Et{∆(L−1)Ã(L)X̃t} = 0, where
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Ã(z) := A(z)[A(0)]−1 and X̃t := A(0)Xt. Let X̃j,t denote the jth element of X̃t for j ∈
{1, ..., n}. The non-predetermined variables of the system are the variables Et{X̃j,t+kj} for all

j ∈ {1, ..., n} such that δj ≥ 1 and all kj ∈ {1, ..., δj}. Their number, ν, is equal to δ :=
∑n

j=1 δj .

I now turn to the case in which ϕ ̸= 0. In this case, the characteristic polynomial of the dynamic

system is still the same as the characteristic polynomial of the corresponding perfect-foresight

system, but the latter system is now[
A(L) L−γB(L)

−ϕL−hV(L) 1

] [
Xt

it

]
= 0.

Except possibly for a zero-measure set of values of ϕ, I can use the same standard result in time-

series analysis as above. I get that there exists k ∈ Z such that P (z), the reciprocal polynomial

of the characteristic polynomial, is

P (z) = zk det

[
A(z) z−γB(z)

−ϕz−hV(z) 1

]
.

Using the Laplace expansion and the notations introduced in the main text, I rewrite P (z) as

P (z) = zk{det[A(z)] − ϕz−γ−hW (z)} = zk[Q(z) + ϕzm−hR(z)]. As a reciprocal polynomial,

P (z) is such that P (0) ̸= 0; moreover, we have Q(0) ̸= 0 and R(0) ̸= 0; as a consequence, we

get k = max(0, h−m), and thus P (z) = Q(z)zmax(0,h−m) + ϕR(z)zmax(0,m−h).

The number of non-predetermined variables, ν, is equal to δ when h is lower than or equal to

a certain threshold, and it increases one-for-one with h when h is higher than this threshold.

This threshold is equal to the highest value of h for which P (0) depends on Q(0), i.e. for which

the most forward variable in the dynamic system is the same as under a policy-instrument

peg (except in the zero-measure case where ϕ = −Q(0)/R(0)). This value is m, and thus

ν = δ +max(0, h−m).

A.7 Proof of Proposition 5

The proof of Proposition 5 is essentially a generalization of the proof of Proposition 1, using

this time P (z) = Q(z)zmax(0,h−m) + ϕR(z)zmax(0,m−h) and ν = δ +max(0, h−m) (as stated in

Lemma 1).

Point (a). I apply Rouché's theorem to J = C, Pb(z) = Q(z)zmax(0,h−m), and Ps(z) =

ϕR(z)zmax(0,m−h). For any |ϕ| < ϕ and any z ∈ C, we have∣∣∣Q(z)zmax(0,h−m)
∣∣∣ = |Q(z)| ≥ min

z̃∈C

∣∣∣∣Q (z̃)

R (z̃)

∣∣∣∣ |R(z)| = ϕ |R(z)| > |ϕR(z)| =
∣∣∣ϕR(z)zmax(0,m−h)

∣∣∣ .
So, Rouché's theorem implies that P (z) has the same number of roots inside C asQ(z)zmax(0,h−m),

i.e. that p = q +max(0, h−m). Since ν = δ +max(0, h−m), we get, for any |ϕ| < ϕ and any

h ∈ Z: (i) if q ≤ δ − 1, then p < ν and S(ϕ, h) = M ; (ii) if q = δ, then p = ν and S(ϕ, h) = D;

and (iii) if q ≥ δ + 1, then p > ν and S(ϕ, h) = E.
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Point (b). I apply Rouché's theorem to J = C, Pb(z) = ϕR(z)zmax(0,m−h), and Ps(z) =

Q(z)zmax(0,h−m). For any |ϕ| > ϕ̄ and any z ∈ C, we have∣∣∣ϕR(z)zmax(0,m−h)
∣∣∣ = |ϕR(z)| > ϕ̄ |R(z)| = max

z̃∈C

∣∣∣∣Q (z̃)

R (z̃)

∣∣∣∣ |R(z)| ≥ |Q(z)| =
∣∣∣Q(z)zmax(0,h−m)

∣∣∣ .
So, Rouché's theorem implies that P (z) has the same number of roots inside C as ϕR(z)zmax(0,m−h),

i.e. that p = r + max(0,m − h). Since ν = δ + max(0, h −m), we get, for any |ϕ| > ϕ̄: (i) if

h ≤ h∗ − 1, then p > ν and S(ϕ, h) = E; (ii) if h = h∗, then p = ν and S(ϕ, h) = D; and (iii) if

h ≥ h∗ + 1, then p < ν and S(ϕ, h) = M .

Points (d)(i) and (d)(ii). For h ≤ m, we have ν = δ and P (z) = Q(z) + ϕR(z)zm−h. I

proceed in four steps.

In the �rst step, I show that for any given |ϕ| ∈ (ϕ, ϕ̄), all but q+ dR − r roots of P (z) converge

uniformly to C as h → −∞. I get this result by applying Rouché's theorem twice. Since

qC = rC = 0, I can consider an arbitrary ϵ ∈ (0, 1) such that neither Q(z) nor R(z) has any root

inside the annulus whose borders are C1−ϵ and C1+ϵ (where again, for any r ∈ R+, Cr denotes

the circle of radius r centered at the origin of the complex plane).

I �rst apply Rouché's theorem to J = C1−ϵ, Pb(z) = Q(z), and Ps(z) = ϕR(z)zm−h. For any

|ϕ| ∈ (ϕ, ϕ̄), any

h ≤ h1−ϵ := m+min

{
0,

⌊
log
(
minz̃∈C1−ϵ |Q (z̃)|

)
− log

(
ϕ̄maxz̃∈C1−ϵ |R (z̃)|

)
− log (1− ϵ)

⌋}
,

and any z ∈ C1−ϵ, we have

|Q(z)| ≥ min
z̃∈C1−ϵ

|Q (z̃)| ≥ ϕ̄ max
z̃∈C1−ϵ

|R (z̃)| (1− ϵ)m−h ≥ ϕ̄
∣∣∣R(z)zm−h

∣∣∣ > ∣∣∣ϕR(z)zm−h
∣∣∣ ,

where the second inequality follows from the de�nition of h1−ϵ. So, Rouché's theorem implies

that P (z) has the same number of roots inside C1−ϵ as Q(z). Therefore, P (z) has also exactly

q roots inside C1−ϵ for any |ϕ| ∈ (ϕ, ϕ̄) and any h ≤ h1−ϵ.

I then apply Rouché's theorem to J = C1+ϵ, Pb(z) = ϕR(z)zm−h, and Ps(z) = Q(z). For any

|ϕ| ∈ (ϕ, ϕ̄), any

h ≤ h1+ϵ := m+min

{
0,

⌊
log
(
ϕminz̃∈C1+ϵ |R (z̃)|

)
− log

(
maxz̃∈C1+ϵ |Q (z̃)|

)
log (1 + ϵ)

⌋}
,

and any z ∈ C1+ϵ, we have∣∣∣ϕR(z)zm−h
∣∣∣ = |ϕR(z)| (1 + ϵ)m−h > ϕ min

z̃∈C1+ϵ

|R (z̃)| (1 + ϵ)m−h ≥ max
z̃∈C1+ϵ

|Q (z̃)| ≥ |Q(z)| ,

where the last but one inequality follows from the de�nition of h1+ϵ. So, Rouché's theorem

implies that P (z) has the same number of roots inside C1+ϵ as ϕR(z)zm−h. Therefore, P (z) has

exactly r + m − h roots inside C1+ϵ for any h ≤ h1+ϵ. As a consequence, for any |ϕ| ∈ (ϕ, ϕ̄)
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and any h ≤ min
(
h1−ϵ, h1+ϵ

)
, P (z) has exactly r +m − h − q roots inside the annulus whose

borders are C1−ϵ and C1+ϵ. Now, the degree of P (z) is dR +m− h when h ≤ m+ dR − dQ. So,

we eventually get that for any |ϕ| ∈ (ϕ, ϕ̄) and any h ≤ min
(
h1−ϵ, h1+ϵ,m+ dR − dQ

)
, all but

q+ dR − r roots of P (z) lie between C1−ϵ and C1+ϵ. We conclude that for any given |ϕ| ∈ (ϕ, ϕ̄),

all but q + dR − r roots of P (z) converge uniformly to C as h → −∞.

In the second step, I show that for any given |ϕ| ∈ (ϕ, ϕ̄), the roots of P (z) uniformly converging

to C as h → −∞ converge in distribution to the uniform distribution on C. This result is a direct
consequence of the Erd®s-Turán theorem (stated in Appendix A.1). Applying this theorem to

P̃ (z) = P (z), and using the result of the previous step, I thus get that all but q + dR − r roots

of P (z) uniformly converge in distribution to the uniform distribution on C as h → −∞, for any

given |ϕ| ∈ (ϕ, ϕ̄).

In the third step, I show that the number of roots of P (z) inside C grows unboundedly as

h → −∞, for any given |ϕ| ∈ (ϕ, ϕ̄). Since |ϕ| > ϕ, there exists an arc A of C such that ∀z ∈ A,
|ϕR(z)| > |Q(z)|. For any r ∈ R+, let Ar denote the image of A under the homothety whose

center is the origin of the complex plane and whose ratio is r (so that in particular A1 = A).
By continuity, there exists ε ∈ (0, 1) such that |ϕR(z)| > |Q(z)| for all z on the Jordan curve

J1+ε made of A, A1+ε, and the two radial line segments joining the endpoints of A and A1+ε

(see Figure A.1 in Appendix A.1). I apply Rouché's theorem to J = J1+ε, Pb(z) = ϕR(z)zm−h,

and Ps(z) = Q(z). For any h ≤ m and any z ∈ J1+ε, we have∣∣∣ϕR(z)zm−h
∣∣∣ ≥ |ϕR(z)| > |Q(z)| .

So, Rouché's theorem implies that P (z) has the same number of roots inside J1+ε as ϕR(z)zm−h.

Therefore, P (z) has at most dR roots inside J1+ε for any h ≤ m. (Figure A.1 represents the

case in which P (z) has no root inside J1+ε; we necessarily get this case if ε is su�ciently small.)

Using the results of the �rst two steps, we get that the number of roots of P (z) inside the Jordan

curve J1−ε made of A1−ε, A, and the two radial line segments joining the endpoints of A1−ε

and A, grows unboundedly as h → −∞. As a result, p grows unboundedly as h → −∞. Thus,

there exists h (|ϕ|) such that p > δ = ν and S(ϕ, h) = E for all h ≤ h (|ϕ|).

In the fourth step, I just note that for any ε ∈
(
0, ϕ̄− ϕ

)
and any |ϕ| ∈ (ϕ+ ε, ϕ̄), there exists,

by continuity, ℓ(ε) > 0 such that the arc A can be chosen of length higher than ℓ(ε). As a result,

h (|ϕ|) can be chosen a bounded function of |ϕ| for |ϕ| ∈ (ϕ+ ε, ϕ̄).

Points (c)(i) and (c)(ii). For h ≥ m, we have ν = δ+h−m and P (z) = Q(z)zh−m+ϕR(z). I

follow the same four steps as in the proof of Points (d)(i) and (d)(ii) above, with some variants.

In the �rst step, I show that for any given |ϕ| ∈ (ϕ, ϕ̄), all but r+ dQ− q roots of P (z) converge

uniformly to C as h → +∞. I get this result by applying Rouché's theorem twice. Since

qC = rC = 0, I can consider an arbitrary ϵ ∈ (0, 1) such that neither Q(z) nor R(z) has any root

inside the annulus whose borders are C1−ϵ and C1+ϵ.
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I �rst apply Rouché's theorem to J = C1−ϵ, Pb(z) = ϕR(z), and Ps(z) = Q(z)zh−m. For any

|ϕ| ∈ (ϕ, ϕ̄), any

h ≥ h̄1−ϵ := m+max

{
0,

⌈
log
(
maxz̃∈C1−ϵ |Q (z̃)|

)
− log

(
ϕminz̃∈C1−ϵ |R (z̃)|

)
− log (1− ϵ)

⌉}
,

and any z ∈ C1−ϵ, we have

|ϕR(z)| > ϕ min
z̃∈C1−ϵ

|R (z̃)| ≥ max
z̃∈C1−ϵ

|Q (z̃)| (1− ϵ)h−m ≥
∣∣∣Q(z)zh−m

∣∣∣ ,
where the second inequality follows from the de�nition of h̄1−ϵ. So, Rouché's theorem implies

that P (z) has the same number of roots inside C1−ϵ as ϕR(z). Therefore, P (z) has also exactly

r roots inside C1−ϵ for any |ϕ| ∈ (ϕ, ϕ̄) and any h ≥ h̄1−ϵ.

I then apply Rouché's theorem to J = C1+ϵ, Pb(z) = Q(z)zh−m, and Ps(z) = ϕR(z). For any

|ϕ| ∈ (ϕ, ϕ̄), any

h ≥ h̄1+ϵ := m+max

{
0,

⌈
log
(
ϕ̄maxz̃∈C1+ϵ |R (z̃)|

)
− log

(
minz̃∈C1+ϵ |Q (z̃)|

)
log (1 + ϵ)

⌉}
,

and any z ∈ C1+ϵ, we have∣∣∣Q(z)zh−m
∣∣∣ = |Q(z)| (1 + ϵ)h−m ≥ min

z̃∈C1+ϵ

|Q (z̃)| (1 + ϵ)h−m ≥ ϕ̄ max
z̃∈C1+ϵ

|R (z̃)| > |ϕR(z)| ,

where the last but one inequality follows from the de�nition of h̄1+ϵ. So, Rouché's theorem

implies that P (z) has the same number of roots inside C1+ϵ as Q(z)zh−m. Therefore, P (z) has

exactly q + h − m roots inside C1+ϵ for any h ≥ h̄1+ϵ. As a consequence, for any |ϕ| ∈ (ϕ, ϕ̄)

and any h ≥ max
(
h̄1−ϵ, h̄1+ϵ

)
, P (z) has exactly q + h −m − r roots inside the annulus whose

borders are C1−ϵ and C1+ϵ. Now, the degree of P (z) is dQ + h−m when h ≥ m+ dR − dQ. So,

we eventually get that for any |ϕ| ∈ (ϕ, ϕ̄) and any h ≥ max
(
h̄1−ϵ, h̄1+ϵ,m+ dR − dQ

)
, all but

r+ dQ − q roots of P (z) lie between C1−ϵ and C1+ϵ. We conclude that for any given |ϕ| ∈ (ϕ, ϕ̄),

all but r + dQ − q roots of P (z) converge uniformly to C as h → +∞.

In the second step, I show that for any given |ϕ| ∈ (ϕ, ϕ̄), the roots of P (z) uniformly converging

to C as h → +∞ converge in distribution to the uniform distribution on C. This result is,

again, a direct consequence of the Erd®s-Turán theorem (stated in Appendix A.1). Applying

this theorem to P̃ (z) = P (z), and using the result of the previous step, I thus get that all but

r + dQ − q roots of P (z) uniformly converge in distribution to the uniform distribution on C as

h → +∞, for any given |ϕ| ∈ (ϕ, ϕ̄).

In the third step, I show that the ratio p/ν is lower than 1 as h → +∞, for any given |ϕ| ∈ (ϕ, ϕ̄).

Since |ϕ| > ϕ, there exists an arc A of C such that ∀z ∈ A, |ϕR(z)| > |Q(z)|. By continuity,

there exists ε ∈ (0, 1) such that |ϕR(z)| > |Q(z)| for all z on the Jordan curve J1−ε (de�ned

above and represented in Figure A.3). I apply Rouché's theorem to J = J1−ε, Pb(z) = ϕR(z),

and Ps(z) = Q(z)zh−m. For any h ≥ m and any z ∈ J1−ε, we have

|ϕR(z)| > |Q(z)| ≥
∣∣∣Q(z)zh−m

∣∣∣ .
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So, Rouché's theorem implies that P (z) has the same number of roots inside J1−ε as ϕR(z).

Therefore, P (z) has at most dR roots inside J1−ε for any h ≥ m. (Figure A.3 represents the

case in which P (z) has no root inside J1−ε; we necessarily get this case if ε is su�ciently small.)

Figure A.3: Roots of P (z) as h → +∞
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Using the results of the �rst two steps, we get that the ratio of the number of roots of P (z) inside

the Jordan curve J1+ε (de�ned above and represented in Figure A.3) to the total number of

roots of P (z) converges to ℓ(A)/(2π) as h → +∞, where again ℓ(.) denotes the standard length

operator (i.e., the Lebesgue measure on C). So, as h → +∞, the ratio of the number of roots of

P (z) outside C to the total number of roots of P (z) is bounded away from 0; or, equivalently, the

ratio of the number of roots of P (z) inside C to the total number of roots of P (z), i.e. the ratio

p/dP , is bounded away from 1. Since the ratio of the number of non-predetermined variables

to the total number of roots of P (z), i.e. the ratio ν/dP , converges to 1 as h → +∞ (given

that both ν and dP increase one-for-one with h), we eventually get that the ratio p/ν is lower

than 1 as h → +∞. Thus, for any given |ϕ| ∈ (ϕ, ϕ̄), there exists h̄ (|ϕ|) such that p < ν and

S(ϕ, h) = M for all h ≥ h̄ (|ϕ|).

In the fourth step, I just note that for any ε ∈
(
0, ϕ̄− ϕ

)
and any |ϕ| ∈ (ϕ+ ε, ϕ̄), there exists,

by continuity, ℓ(ε) > 0 such that the arc A can be chosen of length higher than ℓ(ε). As a result,

h̄ (|ϕ|) can be chosen a bounded function of |ϕ| for |ϕ| ∈ (ϕ+ ε, ϕ̄).

Point (c)(iii). For h ≥ m+max(0, dR−dQ), we have ν = δ+h−m, P (z) = Q(z)zh−m+ϕR(z),

and dP = dQ+h−m. Consider a Jordan curve Jo (where the subscript �o� stands for �outside C�)
that: (i) lies entirely outside C, (ii) surrounds the dQ− q roots of Q(z) outside C (if dQ− q ≥ 1),

and (iii) does not surround C. I apply Rouché's theorem to J = Jo, Pb(z) = Q(z)zh−m, and

Ps(z) = ϕR(z). For any |ϕ| ∈ (ϕ, ϕ̄), any

h ≥ h̄ := m+max

{
0, dR − dQ,

⌈
log
(
ϕ̄maxz̃∈Jo |R (z̃)|

)
− log (minz̃∈Jo |Q (z̃)|)

log (minz̃∈Jo |z̃|)

⌉}
,

and any z ∈ Jo, we have∣∣∣Q(z)zh−m
∣∣∣ ≥ min

z̃∈Jo

∣∣∣Q (z̃) z̃h−m
∣∣∣ ≥ (min

z̃∈Jo

|Q (z̃)|
)(

min
z̃∈Jo

|z̃|
)h−m

≥ ϕ̄max
z̃∈Jo

|R (z̃)| > |ϕR(z)| ,
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where the last but one inequality follows from the de�nition of h̄. So, Rouché's theorem implies

that P (z) has the same number of roots inside Jo as Q(z)zh−m. Therefore, P (z) has exactly

dQ−q roots inside Jo, and hence at least dQ−q roots outside C. We thus get p ≤ dP −(dQ−q) =

h−m+ q = (q − δ) + ν. Therefore, if q ≤ δ − 1, then p < ν and consequently S(ϕ, h) = M for

any |ϕ| ∈ (ϕ, ϕ̄) and any h ≥ h̄.

Point (d)(iii). For h ≤ m, we have ν = δ and P (z) = Q(z) + ϕR(z)zm−h. Consider a

Jordan curve Ji (where the subscript �i� stands for �inside C�) that: (i) lies entirely inside C,
and (ii) surrounds the q roots of Q(z) inside C (if q ≥ 1). I apply Rouché's theorem to J = Ji,

Pb(z) = Q(z), and Ps(z) = ϕR(z)zm−h. For any |ϕ| ∈ (ϕ, ϕ̄), any

h ≤ h := m+min

{
0,

⌊
log (minz̃∈Ji |Q (z̃)|)− log

(
ϕ̄maxz̃∈Ji |R (z̃)|

)
− log (maxz̃∈Ji |z̃|)

⌋}
,

and any z ∈ Ji, we have

|Q(z)| ≥ min
z̃∈Ji

|Q (z̃)| ≥ ϕ̄max
z̃∈Ji

|R (z̃)|
(
max
z̃∈Ji

|z̃|
)m−h

≥ ϕ̄max
z̃∈Ji

∣∣∣R (z̃) z̃m−h
∣∣∣ > ∣∣∣ϕR(z)zm−h

∣∣∣ ,
where the second inequality follows from the de�nition of h. So, Rouché's theorem implies that

P (z) has the same number of roots inside Ji as Q(z). Therefore, P (z) has exactly q roots inside

Ji, and hence at least q roots inside C. We thus get p ≥ q = (q− δ)+ ν. Therefore, if q ≥ δ+1,

then p > ν and consequently S(ϕ, h) = E for any |ϕ| ∈ (ϕ, ϕ̄) and any h ≤ h.

A.8 Proof of Proposition 6

Points (a) and (b)(i). These points straightforwardly follow from Points (a), (c)(iii), and

(d)(iii) of Proposition 5.

Point (b)(ii). The proof of this point is similar to (part of) the proof of Point (b) of Proposition

4. If Amin ⊂ C \ {−1, 1}, then |Q(z)| > ϕ |R(z)| for z ∈ {−1, 1}. So, by continuity, there exist

ϵ ∈ (0, ϕ̄ − ϕ) and two open arcs A and A′ of C such that: (i) 1 ∈ A, (ii) −1 ∈ A′, and (iii)

∀ |ϕ| ∈ (ϕ, ϕ+ ϵ), ∀z ∈ A ∪A′, |Q(z)| > |ϕR(z)|.

For any r ∈ R+, let Ar (resp. A′
r) denote the image of A (resp. A′) under the homothety whose

center is the origin of the complex plane and whose ratio is r, so that in particular A1 = A
(resp. A′

1 = A′). In addition, for any r ∈ R+ \ {0}, let Jr (resp. J ′
r) denote the Jordan curve

made of A (resp. A′), Ar (resp. A′
r), and the two radial line segments joining the endpoints of

A (resp. A′) and Ar (resp. A′
r).

By continuity, there exists ε ∈ (0, 1) such that: (i) neither Q(z) nor R(z) has any root inside

the annulus whose borders are C1−ε and C1+ε, (ii) ∀ |ϕ| ∈ (ϕ, ϕ+ ϵ), ∀h ≤ m, ∀z ∈ J1−ε ∪ J ′
1−ε,

|Q(z)| >
∣∣ϕR(z)zm−h

∣∣, and (iii) ∀ |ϕ| ∈ (ϕ, ϕ + ϵ), ∀h ≥ m, ∀z ∈ J1+ε ∪ J ′
1+ε,

∣∣Q(z)zh−m
∣∣ >

|ϕR(z)| (see Figure A.4).
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Figure A.4: Jordan curves J1−ε, J1+ε, J ′
1−ε, and J ′

1+ε
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I �rst apply Rouché's theorem to Pb(z) = Q(z), Ps(z) = ϕR(z)zm−h, and (alternatively) J1−ε

and J ′
1−ε. I obtain that ∀ |ϕ| ∈ (ϕ, ϕ + ϵ), ∀h ≤ m, P (z) has no root inside J1−ε and no root

inside J ′
1−ε. Therefore, P (z) has no real root between C1−ε and C. Now, we know from Appendix

A.7 that there exists h1−ε ≤ m such that ∀ |ϕ| ∈ (ϕ, ϕ̄), ∀h ≤ h1−ε, P (z) has exactly q roots

inside C1−ε. As a result, ∀ |ϕ| ∈ (ϕ, ϕ + ϵ), ∀h ≤ h1−ε, P (z) has exactly p − q roots between

C1−ε and C, and none of them is real, so p− q is even. Therefore, if q − δ is odd, then p− δ is

odd too. Since ν = δ for h ≤ h1−ε, p − ν is odd as well. As a consequence, p ̸= ν, and hence

S(ϕ, h) ̸= D, for all |ϕ| ∈ (ϕ, ϕ+ ϵ) and all h ≤ h1−ε. Together with Point (d)(ii) of Proposition

5, this result implies that HD is bounded below.

I then apply Rouché's theorem to Pb(z) = Q(z)zh−m, Ps(z) = ϕR(z), and (alternatively) J1+ε

and J ′
1+ε. I obtain that ∀ |ϕ| ∈ (ϕ, ϕ + ϵ), ∀h ≥ m, P (z) has no root inside J1+ε and no root

inside J ′
1+ε. Therefore, P (z) has no real root between C and C1+ε. Now, we know from Appendix

A.7 that there exists h̄1+ε ≥ m such that ∀ |ϕ| ∈ (ϕ, ϕ̄), ∀h ≥ h̄1+ε, P (z) has exactly q + h−m

roots inside C1+ε. As a result, ∀ |ϕ| ∈ (ϕ, ϕ+ ϵ), ∀h ≥ h̄1+ε, P (z) has exactly q+h−m−p roots

between C and C1+ε, and none of them is real, so q + h −m − p is even. Therefore, if q − δ is

odd, then δ + h−m− p is odd too. Since ν = δ + h−m for h ≥ h̄1+ε, ν − p is odd as well. As

a consequence, p ̸= ν, and hence S(ϕ, h) ̸= D, for all |ϕ| ∈ (ϕ, ϕ+ ϵ) and all h ≥ h̄1+ε. Together

with Point (c)(ii) of Proposition 5, this result implies that HD is bounded above.

Point (b)(iii). I consider four alternative cases in turn. First, if Amin = {1} and Q(1)R(1) < 0,

then Point (e) of Proposition 7 (proved in Appendix A.9 below without using Proposition 6)

implies that HD is unbounded below (resp. above) if q = δ − 1 (resp. q = δ + 1). Second, if

Amin = {1} and Q(1)R(1) > 0, then the same reasoning as in Appendix A.9 below, this time

for ϕW = −ϕ instead of ϕW = ϕ, straightforwardly implies that HD is, again, unbounded below

(resp. above) if q = δ − 1 (resp. q = δ + 1).

The third case that I consider is the case in which Amin = {−1} and Q(−1)R(−1) > 0,

and hence ϕ = Q(−1)/R(−1). In this case, I rewrite P (z) as a function of two variables:
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P̂ (ϕ, z) := Q(z)zmax(0,h−m) + ϕR(z)zmax(0,m−h), where (ϕ, z) ∈ R×C. For any h ∈ Z such that

h−m is odd, simple algebra leads to P̂ (ϕ,−1) = 0 and

∂P̂

∂z
(ϕ,−1) = (−1)max(0,m−h)ϕR(−1)

(
h− h̃

)
,

where h̃ := m+Q′(−1)/Q(−1)−R′(−1)/R(−1). This expression for ∂P̂ /∂z(ϕ,−1) is generically

non-zero (it can be zero only if Q′(1)/Q(1) − R′(1)/R(1) is an integer, and I ignore this zero-

measure case). So, one root of the polynomial P̂ (ϕ, z) is −1, and this root is of multiplicity one.

The implicit-function theorem implies the existence of a continuously di�erentiable function

ϕ 7→ Z(ϕ) such that one real root of P (z) can be written as Z(ϕ) in the neighborhood of ϕ = ϕ,

with Z(ϕ) = −1 and

Z ′(ϕ) =
−∂P̂

∂ϕ (ϕ,−1)

∂P̂
∂z (ϕ,−1)

=
−1

ϕ
(
h− h̃

) .
This root of P (z) crosses C at point −1 as ϕ goes through ϕ. It is the only root that crosses

C as ϕ goes through ϕ. Indeed, any root z ∈ C having this property must satisfy P̂ (ϕ, z) = 0,

which implies |Q(z)| = ϕ |R(z)| and hence z = −1 (since Amin = {−1}).

If h < h̃, then Z ′(ϕ) > 0, and therefore the root of P (z) goes from outside to inside C as ϕ

crosses ϕ from below. So, the number of roots of P (z) inside C, p, increases by exactly one as ϕ

crosses ϕ from below. We know from Appendix A.7 that this number is p = q +max(0, h−m)

for ϕ just below ϕ. We also know from Lemma 1 that ν = δ +max(0, h−m). So, if q = δ − 1,

then we move from p < ν to p = ν, and hence from S(ϕ, h) = M to S(ϕ, h) = D, as ϕ crosses

ϕ from below, for any h ∈ Z such that h − m is odd and such that h < h̃. Therefore, HD is

unbounded below.

Alternatively, if h > h̃, then Z ′(ϕ) < 0, and therefore the root of P (z) goes this time from inside

to outside C as ϕ crosses ϕ from below. So, p decreases by exactly one as ϕ crosses ϕ from below.

Again, we know from Appendix A.7 that p = q+max(0, h−m) for ϕ just below ϕ, and we know

from Lemma 1 that ν = δ+max(0, h−m). So, if q = δ+1, then we move from p > ν to p = ν,

and hence from S(ϕ, h) = E to S(ϕ, h) = D, as ϕ crosses ϕ from below, for any h ∈ Z such that

h−m is odd and such that h > h̃. Therefore, HD is unbounded above.

The fourth and last case that I consider is the case in which Amin = {−1} and Q(−1)R(−1) < 0,

and hence ϕ = −Q(−1)/R(−1). In this case, the analysis and the conclusion are exactly the

same as in the third case, except that �h−m is odd� should be replaced by �h−m is even.�

A.9 Proof of Proposition 7

Points (a)-(d) and (e)(i). These points straightforwardly follow from the de�nitions of HD

and ϕW , Points (a)-(b) of Proposition 5, and the restriction ϕW > 0.

Point (e)(ii). The proof of this point is essentially a generalization of the proofs of Point
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(c) of Proposition 3 and Point (f)(ii) of Proposition 4. I assume that Amin = {1} (as stated

in this point). I rewrite P (z) as a function of two variables: P̂ (ϕ, z) := Q(z)zmax(0,h−m) +

ϕR(z)zmax(0,m−h), where (ϕ, z) ∈ R× C. Simple algebra leads to P̂ (ϕW , 1) = 0 and

∂P̂

∂z
(ϕW , 1) = Q(1) (h− h∗∗) .

This last expression is generically non-zero (it can be zero only if Q′(1)/Q(1) − R′(1)/R(1) is

an integer, and I ignore this zero-measure case). So, one root of the polynomial P̂ (ϕW , z) is 1,

and this root is of multiplicity one. The implicit-function theorem implies the existence of a

continuously di�erentiable function ϕ 7→ Z(ϕ) such that one real root of P (z) can be written as

Z(ϕ) in the neighborhood of ϕ = ϕW , with Z(ϕW ) = 1 and

Z ′(ϕW ) =
−∂P̂

∂ϕ (ϕW , 1)

∂P̂
∂z (ϕW , 1)

=
1

ϕW (h− h∗∗)
.

This root of P (z) crosses C at point 1 as ϕ goes through ϕW . It is the only root that crosses C
as ϕ goes through ϕW . Indeed, any root z ∈ C having this property must satisfy P̂ (ϕW , z) = 0,

which implies |Q(z)| = ϕ |R(z)| and hence z = 1 (since Amin = {1}).

For any h < h∗∗, we have Z ′(ϕW ) < 0, and therefore the root of P (z) goes from outside to

inside C as ϕ crosses ϕW from below. So, the number of roots of P (z) inside C, p, increases
by exactly one as ϕ crosses ϕW from below. We know from Appendix A.7 that this number

is p = q + max(0, h − m) for ϕ just below ϕ = ϕW . We also know from Lemma 1 that

ν = δ + max(0, h −m). So, if q = δ − 1, then we move from p < ν to p = ν, and hence from

S(ϕ, h) = M to S(ϕ, h) = D, as ϕ crosses ϕW from below; in this case, the Taylor principle is

locally necessary and su�cient for determinacy. Alternatively, if q ≤ δ − 2 (resp. q ≥ δ), then

we get p < ν and S(ϕ, h) = M (resp. p > ν and S(ϕ, h) = E) for ϕ just above ϕW , and the

Taylor principle is not locally necessary and su�cient for determinacy.

For any h > h∗∗, we have Z ′(ϕW ) > 0, and therefore the root of P (z) goes this time from inside

to outside C as ϕ crosses ϕW from below. So, p decreases by exactly one as ϕ crosses ϕW from

below. Again, we know from Appendix A.7 that p = q+max(0, h−m) for ϕ just below ϕ = ϕW ,

and we know from Lemma 1 that ν = δ +max(0, h−m). So, if q = δ + 1, then we move from

p > ν to p = ν, and hence from S(ϕ, h) = E to S(ϕ, h) = D, as ϕ crosses ϕW from below; in

this case, the Taylor principle is locally necessary and su�cient for determinacy. Alternatively,

if q ≤ δ (resp. q ≥ δ+2), then we get p < ν and S(ϕ, h) = M (resp. p > ν and S(ϕ, h) = E) for

ϕ just above ϕW , and the Taylor principle is not locally necessary and su�cient for determinacy.

A.10 Proof of Proposition 8

Point (b1). I consider an arbitrary ε ∈ (0, 1) such that the only roots of R(z) between C1−ε

(included) and C1+ε (included) are the rC roots of R(z) on C. I proceed in four steps.
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In the �rst step, I show that ∀h ≤ h∗ − 1, ∃ϕh > 0, ∀ |ϕ| > ϕh, S(ϕ, h) = E. I apply Rouché's

theorem to J = C1−ε, Pb(z) = ϕR(z)zmax(0,m−h), and Ps(z) = Q(z)zmax(0,h−m). For any h ∈ Z,
any

|ϕ| > max
z̃∈C1−ε

∣∣∣∣Q (z̃)

R (z̃)

∣∣∣∣ (1− ε)h−m , (A.2)

and any z ∈ C1−ε, we have
∣∣ϕR(z)zmax(0,m−h)

∣∣ > ∣∣Q(z)zmax(0,h−m)
∣∣. So, P (z) has the same

number of roots inside C1−ε as ϕR(z)zmax(0,m−h). Therefore, P (z) has exactly r+max(0,m−h) =

ν + (h∗ − h) roots inside C1−ε, and hence at least ν + (h∗ − h) roots inside C. For h ≤ h∗ − 1

and |ϕ| > ϕh := maxz̃∈C1−ε |Q (z̃) /R (z̃)| (1− ε)h−m, thus, we have p > ν and S(ϕ, h) = E.

In the second step, I show that ∀h ≥ h̄∗+1, ∃ϕh > 0, ∀ |ϕ| > ϕh, S(ϕ, h) = M . I apply Rouché's

theorem to J = C1+ε, Pb(z) = ϕR(z)zmax(0,m−h), and Ps(z) = Q(z)zmax(0,h−m). For any h ∈ Z,
any

|ϕ| > max
z̃∈C1+ε

∣∣∣∣Q (z̃)

R (z̃)

∣∣∣∣ (1 + ε)h−m , (A.3)

and any z ∈ C1+ε, we have
∣∣ϕR(z)zmax(0,m−h)

∣∣ > ∣∣Q(z)zmax(0,h−m)
∣∣. So, P (z) has the same

number of roots inside C1+ε as ϕR(z)zmax(0,m−h). Therefore, P (z) has exactly r+rC+max(0,m−
h) = ν+

(
h̄∗ − h

)
roots inside C1+ε, and hence at most ν+

(
h̄∗ − h

)
roots inside C. For h ≥ h̄∗+1

and |ϕ| > ϕh := maxz̃∈C1+ε |Q (z̃) /R (z̃)| (1 + ε)h−m, thus, we have p < ν and S(ϕ, h) = M .

In the third step, I show that ∀h ∈ {h∗, ..., h̄∗}, ∃ϕh > 0, ∀ |ϕ| > ϕh, S(ϕ, h) may depend on

ϕ only through the sign of ϕ. It is easy to see, with Rouché's theorem, that for any given

h ∈ {h∗, ..., h̄∗}, as |ϕ| → +∞, dR roots of P (z) converge to the roots of R(z), while the other

roots of P (z) (if any) either converge to 0, or diverge to +∞ in modulus. So, for any given

h ∈ {h∗, ..., h̄∗}, there exists ϕh > 0 such that the number of roots of P (z) inside C and the

number of roots of P (z) outside C are constant functions of ϕ for ϕ ∈ (ϕh,+∞), and constant

functions of ϕ for ϕ ∈ (−∞,−ϕh). These numbers p and dP − p depend on how many of the rC

roots of P (z) converging to the rC roots of R(z) on C converge from inside C, and how many of

them converge from outside C.

In the fourth step, I use the following lemmas:

Lemma 2: ∃ϕ−∞ > 0, ∃h ≤ h∗ − 1, ∀ |ϕ| > ϕ−∞, ∀h ≤ h, S(ϕ, h) = E.

Lemma 3: ∃ϕ+∞ > 0, ∃h̄ ≥ h̄∗ + 1, ∀ |ϕ| > ϕ+∞, ∀h ≥ h̄, S(ϕ, h) = M .

Proofs: See Appendix A.11 for Lemma 2, and Appendix A.12 for Lemma 3. ■

These two lemmas, together with the results of the previous steps, straightforwardly imply Point

(b1) with ϕ̄ := max
{
ϕ−∞,max

{
ϕh|h ≤ h ≤ h̄

}
, ϕ+∞

}
.

Point (b2). I assume that rC = 1 and R(1) = 0 (as stated in this point), which implies in

particular that h̄∗ = h∗+1. We know from the proof of Point (b1) above that, for |ϕ| su�ciently

large, P (z) has exactly ν+(h∗ − h) roots inside C1−ε and exactly ν+
(
h̄∗ − h

)
roots inside C1+ε.
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Therefore, for h = h∗ (resp. h = h̄∗) and |ϕ| su�ciently large, P (z) has exactly ν (resp. ν − 1)

roots inside C1−ε and exactly ν + 1 (resp. ν) roots inside C1+ε.

For ϕ ̸= 0, P (z) has the same roots as ϵQ(z)zmax(0,h−m) + R(z)zmax(0,m−h), where ϵ := 1/ϕ. I

rewrite the latter polynomial as a function of two variables: P̂ (ϵ, z). I extend the domain of this

function to allow ϵ to be zero: (ϵ, z) ∈ R×C. We have P̂ (0, 1) = 0 and ∂P̂ /∂z(0, 1) = R′(1) ̸= 0,

where the inequality follows from rC = 1 (which implies that 1 is not a multiple root of R(z)).

So, one root of the polynomial P̂ (0, z) is 1, and this root is of multiplicity one. The implicit-

function theorem implies the existence of a continuously di�erentiable function ϵ 7→ Z(ϵ) such

that one real root of P̂ (ϵ, z) can be written as Z(ϵ) in the neighborhood of ϵ = 0, with Z(0) = 1

and

Z ′(0) =
−∂P̂

∂ϵ (0, 1)

∂P̂
∂z (0, 1)

=
−Q(1)

R′(1)
.

This real root of P̂ (ϵ, z) crosses C at point 1 as ϵ goes through 0.

For −Q(1)/R′(1) < 0, or equivalently Q(1)R′(1) > 0, we have Z ′(0) < 0; so, for |ϵ| su�ciently

small, this real root of P̂ (ϵ, z) is just above 1 if ϵ < 0, and just below 1 if ϵ > 0. Therefore, for

ϕ = 1/ϵ su�ciently large in absolute value, one real root of P (z) is just above 1 if ϕ < 0, and

just below 1 if ϕ > 0. As a result, for h = h∗ (resp. h = h̄∗) and |ϕ| su�ciently large, P (z)

has exactly ν (resp. ν − 1) roots inside C if ϕ < 0, and exactly ν + 1 (resp. ν) roots inside C if

ϕ > 0. Thus, (S(ϕ, h∗), S(ϕ, h̄∗)) = (D,M) if ϕ < 0, and (S(ϕ, h∗), S(ϕ, h̄∗)) = (E,D) if ϕ > 0.

This result holds for |ϕ| su�ciently large and in particular, by construction of ϕ̄, for |ϕ| > ϕ̄.

Alternatively, for Q(1)R′(1) < 0, we have Z ′(0) > 0; so, for |ϵ| su�ciently small, this real root

of P̂ (ϵ, z) is just below 1 if ϵ < 0, and just above 1 if ϵ > 0. Therefore, for ϕ = 1/ϵ su�ciently

large in absolute value, one real root of P (z) is just below 1 if ϕ < 0, and just above 1 if

ϕ > 0. As a result, for h = h∗ (resp. h = h̄∗) and |ϕ| su�ciently large, P (z) has exactly ν + 1

(resp. ν) roots inside C if ϕ < 0, and exactly ν (resp. ν − 1) roots inside C if ϕ > 0. Thus,

(S(ϕ, h∗), S(ϕ, h̄∗)) = (E,D) if ϕ < 0, and (S(ϕ, h∗), S(ϕ, h̄∗)) = (D,M) if ϕ > 0. This result

holds for |ϕ| su�ciently large and in particular, by construction of ϕ̄, for |ϕ| > ϕ̄.

Other points. Proposition 8 states that Points (a) and (c)-(d) of Proposition 5 still hold.

The proofs of Points (a), (c)(iii), and (d)(iii) are exactly the same as in Appendix A.7 (with

ϕ̄ in these proofs now being de�ned as in the proof of Point (b1) above). Points (d)(i) and

(d)(ii) are a direct consequence of the following two results: �rst, as I show in Appendix A.11,

∀b > 0, ∃h1+ϵ ∈ Z, ∀ |ϕ| > ϕ + b, ∀h ≤ min
(
h1+ϵ,m− dQ − 1

)
, if x ≥ x̄ then S(ϕ, h) = E,

where x denotes the number of roots of P (z) whose angular coordinate belongs to a certain non-

degenerate interval (which depends neither on ϕ nor on h), while x̄ is a given positive integer

(which depends neither on ϕ nor on h); and second, as straightforwardly implied by the Erd®s-

Turán theorem, the angular coordinates of the roots of P (z) converge in distribution to the

uniform distribution on (0, 2π) as h → −∞, for any given |ϕ| ∈ (ϕ, ϕ̄). Similarly, Points (c)(i)

and (c)(ii) are a direct consequence of the following two results: �rst, as I show in Appendix
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A.12, ∀b > 0, ∃h̄1−ϵ ∈ Z, ∀ |ϕ| > ϕ+b, ∀h ≥ max
(
h̄1−ϵ,m+ dR + 1

)
, if x ≥ x̄ then S(ϕ, h) = M ,

where x denotes again the number of roots of P (z) whose angular coordinate belongs to a certain

non-degenerate interval (which depends neither on ϕ nor on h), while x̄ is again a given positive

integer (which depends neither on ϕ nor on h); and second, as straightforwardly implied by the

Erd®s-Turán theorem, the angular coordinates of the roots of P (z) converge in distribution to

the uniform distribution on (0, 2π) as h → +∞, for any given |ϕ| ∈ (ϕ, ϕ̄).

Proposition 8 also states that Points (a)-(b) of Proposition 6 still hold. The proofs of these

points are exactly the same as in Appendix A.8. The proof of Point (b)(ii) of Proposition 6,

in particular, uses two results established in Appendix A.7: these results still hold, and their

proof is unchanged. Similarly, the proof of Point (b)(iii) of Proposition 6 is unchanged because

R(1) ̸= 0 when Amin = {1}, and R(−1) ̸= 0 when Amin = {−1}. Finally, Proposition 8 states

that if R(1) ̸= 0 and ϕW > 0, then Points (a)-(b) and (e) of Proposition 7 still hold. The proofs

of these points are exactly the same as in Appendix A.9.

A.11 Proof of Lemma 2

Let b be an arbitrary positive real number (with �b� standing for �bu�er�). There exists an arc

A of C such that ∀ |ϕ| > ϕ+ b, ∀z ∈ A, |ϕR(z)| > |Q(z)|. By continuity, there also exists ϵ > 0

such that: (i) ∀ |ϕ| > ϕ+ b, ∀z ∈ J1+ϵ, |ϕR(z)| > |Q(z)| (where again J1+ϵ denotes the Jordan

curve made of A, A1+ϵ, and the two radial line segments joining the endpoints of A and A1+ϵ),

and (ii) R(z) has no root between C (excluded) and C1+ϵ (included). I apply Rouché's theorem

to J = J1+ϵ, Pb(z) = ϕR(z)zm−h, and Ps(z) = Q(z). For any |ϕ| > ϕ+ b, any h ≤ m, and any

z ∈ J1+ϵ, we have ∣∣∣ϕR(z)zm−h
∣∣∣ ≥ |ϕR(z)| > |Q(z)| .

So, P (z) has the same number of roots inside J1+ϵ as ϕR(z)zm−h; therefore, P (z) has no root

inside J1+ϵ. I also apply Rouché's theorem to J = C1+ϵ, Pb(z) = ϕR(z)zm−h, and Ps(z) = Q(z).

For any |ϕ| > ϕ+ b, any

h ≤ h1+ϵ := m+min

{
0,

⌊
log
(
ϕminz̃∈C1+ϵ |R (z̃)|

)
− log

(
maxz̃∈C1+ϵ |Q (z̃)|

)
log (1 + ϵ)

⌋}
,

and any z ∈ C1+ϵ, we have∣∣∣ϕR(z)zm−h
∣∣∣ = |ϕR(z)| (1 + ϵ)m−h > ϕ min

z̃∈C1+ϵ

|R (z̃)| (1 + ϵ)m−h ≥ max
z̃∈C1+ϵ

|Q (z̃)| ≥ |Q(z)| ,

where the last but one inequality follows from the de�nition of h1+ϵ. So, P (z) has the same

number of roots inside C1+ϵ as ϕR(z)zm−h; therefore, P (z) has exactly r+rC+m−h roots inside

C1+ϵ. In the following, I restrict my attention to |ϕ| > ϕ + b and h ≤ min
(
h1+ϵ,m− dQ − 1

)
.

This restriction implies that P (z) has no root inside J1+ϵ and has exactly r + rC + m − h

roots inside C1+ϵ. Moreover, h ≤ m − dQ − 1 implies dP = dR + m − h, so P (z) has exactly

dP − (r + rC +m− h) = dR − r − rC roots outside C1+ϵ.
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Let α and ᾱ denote the angular coordinates of the endpoints of A, with 0 < α < ᾱ < 2π (I

am assuming for simplicity that 1 /∈ A; this assumption is made without any loss in generality,

since A can always be chosen such that 1 /∈ A). Let x denote the number of roots of P (z) whose

angular coordinate belongs to (α, ᾱ). These x roots can have a modulus lower than 1 or higher

than 1+ϵ, but not between 1 and 1+ϵ, since P (z) has no root inside J1+ϵ. Moreover, the number

of roots of modulus higher than 1 + ϵ among these x roots cannot exceed dR − r − rC , which is

the total number of roots of P (z) outside C1+ϵ. Therefore, the number of roots of modulus lower

than 1 among these x roots is at least x− (dR − r − rC). Thus, if x ≥ x̄ := dR − r− rC + δ + 1,

then the number of roots of modulus lower than 1 among these x roots is at least δ + 1, so

p ≥ δ + 1 > δ = ν and S(ϕ, h) = E.

I now establish a condition on |ϕ| and h that implies x ≥ x̄ and hence S(ϕ, h) = E. Applying

the Erd®s-Turán theorem (stated in Appendix A.1) to P̃ (z) = P (z), I get x− x̄ ≥ f(|ϕ| , h) with

f(|ϕ| , h) :=
(
ᾱ− α

2π

)
(dR +m− h)− x̄− 16

√√√√(dR +m− h) log

(∑dQ
k=0 |qk|+ |ϕ|

∑dR
k=0 |rk|√

|q0rdRϕ|

)
,

where qj for 0 ≤ j ≤ dQ denotes the coe�cient of zj in Q(z), and rj for 0 ≤ j ≤ dR denotes

the coe�cient of zj in R(z). For |ϕ| ≥ 1 and h ≤ h1 := ⌊dR +m− 4πx̄/(ᾱ− α)⌋, moreover, we

have f(|ϕ| , h) ≥ 16g(|ϕ| , h) with

g(|ϕ| , h) :=
√
K1 (dR +m− h)−

√
(dR +m− h) log

(
K2

√
|ϕ|
)
,

where K1 := [(ᾱ−α)/(64π)]2 and K2 := (
∑dQ

k=0 |qk|+
∑dR

k=0 |rk|)/
√

|q0rdR |. So, for |ϕ| ≥ 1 and

h ≤ h1, a su�cient condition for f(|ϕ| , h) ≥ 0, and hence x ≥ x̄, and hence S(ϕ, h) = E, is

g(|ϕ| , h) ≥ 0, or equivalently

log |ϕ| ≤ (−2K1)h+ [2K1 (dR +m)− 2 logK2] . (A.4)

For h ≤ h∗ − 1, another su�cient condition for S(ϕ, h) = E is (A.2), which can be rewritten as

log |ϕ| > [log (1− ε)]h+ [logK3 −m log (1− ε)] , (A.5)

where K3 := maxz̃∈C1−ε |Q (z̃) /R (z̃)|. The parameter ε ∈ (0, 1) in (A.2) can be chosen arbitrar-

ily small. I choose it lower than 1− e−2K1 . Then, the two su�cient conditions (A.4) and (A.5)

together imply that S(ϕ, h) = E for |ϕ| ≥ 1 and h ≤ min(h1, h
∗ − 1, h2), where

h2 :=

⌊
2K1 (dR +m) +m log (1− ε)− 2 logK2 − logK3

2K1 + log (1− ε)

⌋
.

To conclude, taking into account the restrictions imposed earlier on |ϕ| and h, I thus get

S(ϕ, h) = E for all |ϕ| > ϕ−∞ and all h ≤ h, where ϕ−∞ := max
(
ϕ+ b, 1

)
and h :=

min
(
h1+ϵ,m− dQ − 1, h1, h

∗ − 1, h2
)
.
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A.12 Proof of Lemma 3

The proof of Lemma 3 is similar to that of Lemma 2. Let b be again an arbitrary positive

real number (with �b� standing for �bu�er�). There exists, again, an arc A of C such that

∀ |ϕ| > ϕ + b, ∀z ∈ A, |ϕR(z)| > |Q(z)|. By continuity, there also exists ϵ > 0 such that: (i)

∀ |ϕ| > ϕ+ b, ∀z ∈ J1−ϵ, |ϕR(z)| > |Q(z)| (where again J1−ϵ denotes the Jordan curve made of

A, A1−ϵ, and the two radial line segments joining the endpoints of A and A1−ϵ), and (ii) R(z)

has no root between C1−ϵ (included) and C (excluded). I apply Rouché's theorem to J = J1−ϵ,

Pb(z) = ϕR(z), and Ps(z) = Q(z)zh−m. For any |ϕ| > ϕ+ b, any h ≥ m, and any z ∈ J1−ϵ, we

have

|ϕR(z)| > |Q(z)| ≥
∣∣∣Q(z)zh−m

∣∣∣ .
So, P (z) has the same number of roots inside J1−ϵ as ϕR(z); therefore, P (z) has no root inside

J1−ϵ. I also apply Rouché's theorem to J = C1−ϵ, Pb(z) = ϕR(z), and Ps(z) = Q(z)zh−m. For

any |ϕ| > ϕ+ b, any

h ≥ h̄1−ϵ := m+max

{
0,

⌈
log
(
maxz̃∈C1−ϵ |Q (z̃)|

)
− log

(
ϕminz̃∈C1−ϵ |R (z̃)|

)
− log (1− ϵ)

⌉}
,

and any z ∈ C1−ϵ, we have

|ϕR(z)| > ϕ min
z̃∈C1−ϵ

|R (z̃)| ≥ max
z̃∈C1−ϵ

|Q (z̃)| (1− ϵ)h−m ≥ |Q(z)| (1− ϵ)h−m =
∣∣∣Q(z)zh−m

∣∣∣ ,
where the second inequality follows from the de�nition of h̄1−ϵ. So, P (z) has the same number

of roots inside C1−ϵ as ϕR(z); therefore, P (z) has exactly r roots inside C1−ϵ. In the following,

I restrict my attention to |ϕ| > ϕ+ b and h ≥ max
(
h̄1−ϵ,m+ dR + 1

)
. This restriction implies

that P (z) has no root inside J1−ϵ and has exactly r roots inside C1−ϵ. Moreover, h ≥ m+dR+1

implies dP = dQ + h−m.

Let α and ᾱ denote, again, the angular coordinates of the endpoints of A, with 0 < α < ᾱ < 2π

(I am again assuming, for simplicity and without any loss in generality, that 1 /∈ A). Let x

denote, again, the number of roots of P (z) whose angular coordinate belongs to (α, ᾱ). These

x roots can have a modulus lower than 1 − ϵ or higher than 1, but not between 1 − ϵ and 1,

since P (z) has no root inside J1−ϵ. Moreover, the number of roots of modulus lower than 1− ϵ

among these x roots cannot exceed r, which is the total number of roots of P (z) inside C1−ϵ.

Therefore, the number of roots of modulus higher than 1 among these x roots is at least x− r.

Thus, if x ≥ x̄ := dQ + r + 1 − δ, then the number of roots of modulus higher than 1 among

these x roots is at least dQ + 1 − δ; so, the number of roots of P (z) outside C is also at least

dQ + 1− δ; so, p ≤ dP − (dQ + 1− δ) = δ + h−m− 1 = ν − 1 < ν and S(ϕ, h) = M .

I now establish a condition on |ϕ| and h that implies x ≥ x̄ and hence S(ϕ, h) = M . Applying
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the Erd®s-Turán theorem (stated in Appendix A.1) to P̃ (z) = P (z), I get x− x̄ ≥ f(|ϕ| , h) with

f(|ϕ| , h) :=
(
ᾱ− α

2π

)
(dQ + h−m)− x̄− 16

√√√√√(dQ + h−m) log

∑dQ
k=0 |qk|+ |ϕ|

∑dR
k=0 |rk|√∣∣qdQr0ϕ∣∣

,

where again qj for 0 ≤ j ≤ dQ denotes the coe�cient of zj in Q(z), and rj for 0 ≤ j ≤ dR

denotes the coe�cient of zj in R(z). For |ϕ| ≥ 1 and h ≥ h1 := ⌈m− dQ + 4πx̄/(ᾱ− α)⌉,
moreover, we have f(|ϕ| , h) ≥ 16g(|ϕ| , h) with

g(|ϕ| , h) :=
√

K1 (dQ + h−m)−
√

(dQ + h−m) log
(
K2

√
|ϕ|
)
,

where K1 := [(ᾱ−α)/(64π)]2 and K2 := (
∑dQ

k=0 |qk|+
∑dR

k=0 |rk|)/
√∣∣qdQr0∣∣. So, for |ϕ| ≥ 1 and

h ≥ h1, a su�cient condition for f(|ϕ| , h) ≥ 0, and hence x ≥ x̄, and hence S(ϕ, h) = M , is

g(|ϕ| , h) ≥ 0, or equivalently

log |ϕ| ≤ (2K1)h+ [2K1 (dQ −m)− 2 logK2] . (A.6)

For h ≥ h̄∗ +1, another su�cient condition for S(ϕ, h) = M is (A.3), which can be rewritten as

log |ϕ| > [log (1 + ε)]h+ [logK3 −m log (1 + ε)] , (A.7)

where K3 := maxz̃∈C1+ε |Q (z̃) /R (z̃)|. The parameter ε ∈ (0, 1) in (A.3) can be chosen arbitrar-

ily small. I choose it lower than e2K1 − 1. Then, the two su�cient conditions (A.6) and (A.7)

together imply that S(ϕ, h) = M for |ϕ| ≥ 1 and h ≥ max(h1, h̄
∗ + 1, h2), where

h2 :=

⌈
2 logK2 + logK3 −m log (1 + ε)− 2K1 (dQ −m)

2K1 − log (1 + ε)

⌉
.

To conclude, taking into account the restrictions imposed earlier on |ϕ| and h, I thus get

S(ϕ, h) = M for all |ϕ| > ϕ+∞ and all h ≥ h̄, where ϕ+∞ := max
(
ϕ+ b, 1

)
and h̄ :=

max
(
h̄1−ϵ,m+ dR + 1, h1, h̄

∗ + 1, h2
)
. Note �nally that h ≥ m + dR + 1 and dR ≥ r + rC

imply h ≥ h̄∗ + 1; so, h̄ can be more simply written as h̄ = max
(
h̄1−ϵ,m+ dR + 1, h1, h2

)
.

A.13 Proof of Proposition 9

Points (e1)-(e4). I assume that qC = 1 and Q(1) = 0 (as stated in the proposition). I

consider an arbitrary ε ∈ (0, 1) such that the only root of Q(z) between C1−ε (included) and

C1+ε (included) is 1 (with multiplicity one). I �rst apply Rouché's theorem to J = C1−ε,

Pb(z) = Q(z)zmax(0,h−m), and Ps(z) = ϕR(z)zmax(0,m−h). For any h ∈ Z, any

|ϕ| < min
z̃∈C1−ε

∣∣∣∣Q (z̃)

R (z̃)

∣∣∣∣ (1− ε)h−m ,

and any z ∈ C1−ε, we have
∣∣Q(z)zmax(0,h−m)

∣∣ > ∣∣ϕR(z)zmax(0,m−h)
∣∣. So, P (z) has the same

number of roots inside C1−ε as Q(z)zmax(0,h−m). Therefore, P (z) has exactly q+max(0, h−m) =
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ν + (q − δ) roots inside C1−ε, and hence at least ν + (q − δ) roots inside C: p ≥ ν + (q − δ).

Thus, if q ≥ δ + 1, then p > ν and (S+, S−) = (E,E).

I then apply Rouché's theorem to J = C1+ε, Pb(z) = Q(z)zmax(0,h−m), and Ps(z) = ϕR(z)zmax(0,m−h).

For any h ∈ Z, any

|ϕ| < min
z̃∈C1+ε

∣∣∣∣Q (z̃)

R (z̃)

∣∣∣∣ (1 + ε)h−m ,

and any z ∈ C1+ε, we have
∣∣Q(z)zmax(0,h−m)

∣∣ > ∣∣ϕR(z)zmax(0,m−h)
∣∣. So, P (z) has the same

number of roots inside C1+ε as Q(z)zmax(0,h−m). Therefore, P (z) has exactly q+1+max(0, h−
m) = ν + (q + 1− δ) roots inside C1+ε, and hence at most ν + (q + 1− δ) roots inside C:
p ≤ ν + (q + 1− δ). Thus, if q ≤ δ − 2, then p < ν and (S+, S−) = (M,M).

For q ∈ {δ − 1, δ}, S(ϕ, h) depends on whether the unique root of P (z) between C1−ε and C1+ε

lies inside or outside C. To answer this question, I rewrite P (z) as a function of two variables:

P̂ (ϕ, z) := Q(z)zmax(0,h−m) + ϕR(z)zmax(0,m−h), where (ϕ, z) ∈ R × C. We have P̂ (0, 1) = 0

and ∂P̂ /∂z(0, 1) = Q′(1) ̸= 0, where the inequality follows from qC = 1 (which implies that

1 is not a multiple root of Q(z)). So, one root of the polynomial P̂ (0, z) is 1, and this root

is of multiplicity one. The implicit-function theorem implies the existence of a continuously

di�erentiable function ϕ 7→ Z(ϕ) such that one real root of P (z) can be written as Z(ϕ) in the

neighborhood of ϕ = 0, with Z(0) = 1 and

Z ′(0) =
−∂P̂

∂ϕ (0, 1)

∂P̂
∂z (0, 1)

=
−R(1)

Q′(1)
.

This real root of P (z) crosses C at point 1 as ϕ goes through 0.

For −R(1)/Q′(1) < 0, or equivalently Q′(1)R(1) > 0, we have Z ′(0) < 0. So, for |ϕ| su�ciently

small, this real root of P (z) is just above 1 if ϕ < 0, and just below 1 if ϕ > 0. Therefore,

p = ν + (q − δ) if ϕ < 0, and p = ν + (q + 1− δ) if ϕ > 0. When q = δ− 1, thus, we have p < ν

if ϕ < 0, and p = ν if ϕ > 0; so, (S+, S−) = (D,M). When q = δ, we have p = ν if ϕ < 0, and

p > ν if ϕ > 0; so, (S+, S−) = (E,D).

Alternatively, for Q′(1)R(1) < 0, we have Z ′(0) > 0. So, for |ϕ| su�ciently small, this real root

of P (z) is just below 1 if ϕ < 0, and just above 1 if ϕ > 0. Therefore, p = ν + (q + 1− δ) if

ϕ < 0, and p = ν + (q − δ) if ϕ > 0. When q = δ − 1, thus, we have p = ν if ϕ < 0, and p < ν

if ϕ > 0; so, (S+, S−) = (M,D). When q = δ, we have p > ν if ϕ < 0, and p = ν if ϕ > 0; so,

(S+, S−) = (D,E).

Other points. Points (e5)-(e6) of Proposition 9 are a straightforward consequence of Points

(e1)-(e4) of this proposition. Proposition 9 states that Point (b) of Proposition 5 still holds.

The proof of this point is exactly the same as in Appendix A.7. This point straightforwardly

implies that Points (c)-(d) of Proposition 7 still hold as well.

Proposition 9 also states that Points (d)(i) and (d)(ii) of Proposition 5 still hold. The proof of

these points is exactly the same as in Appendix A.7, except that: (i) the arbitrary ϵ ∈ (0, 1)
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in the �rst step of the proof should now be chosen such that the only roots of Q(z) and R(z)

between C1−ε (included) and C1+ε (included) are the qC roots of Q(z) on C; (ii) |ϕ| ∈ (ϕ, ϕ̄) in

this proof should be replaced by |ϕ| ∈ (ϕ + b, ϕ̄), where b is an arbitrary positive real number

(with �b� standing for �bu�er�); and (iii) ϕ should be replaced by ϕ+ b in the de�nition of h1+ϵ

and in the inequality just below this de�nition.

Finally, Proposition 9 states that Points (c)(i) and (c)(ii) of Proposition 5 still hold. The proof

of these points is exactly the same as in Appendix A.7, except that: (i) again, the arbitrary

ϵ ∈ (0, 1) in the �rst step of the proof should now be chosen such that the only roots of Q(z)

and R(z) between C1−ε (included) and C1+ε (included) are the qC roots of Q(z) on C; (ii) again,
|ϕ| ∈ (ϕ, ϕ̄) in this proof should be replaced by |ϕ| ∈ (ϕ+ b, ϕ̄), where b is an arbitrary positive

real number (with �b� standing for �bu�er�); (iii) ϕ should be replaced by ϕ+ b in the de�nition

of h̄1−ϵ and in the inequality just below this de�nition; and (iv) in the �rst two steps of the

proof, q should be replaced by q + qC .

A.14 Proof of Proposition 10

Proposition 10 states that Points (b1)-(b2) of Proposition 8 still hold. The proof of Point (b1) is

exactly the same as in Appendix A.10; this proof rests on Lemmas 2 and 3; the proofs of these

lemmas are exactly the same as in Appendices A.11 and A.12, except that ϕ should be replaced

by ϕ + b in the de�nition of h1+ϵ and in the inequality just below this de�nition (in Appendix

A.11), as well as in the de�nition of h̄1−ϵ and in the inequality just below this de�nition (in

Appendix A.12). The proof of Point (b2) is also exactly the same as in Appendix A.10; in

particular, we still have Q(1) ̸= 0 in this proof because Q(z) and R(z) have no common root on

C.

Proposition 10 also states that Points (c)(i), (c)(ii), (d)(i), and (d)(ii) of Proposition 5 still hold.

The proof of these points is exactly the same as in Appendix A.10; this proof uses two results

established in Appendices A.11 and A.12; the proof of these results is unchanged except that,

again, ϕ should be replaced by ϕ + b in the de�nition of h1+ϵ and in the inequality just below

this de�nition (in Appendix A.11), as well as in the de�nition of h̄1−ϵ and in the inequality just

below this de�nition (in Appendix A.12).

Finally, Proposition 10 states that if qC = 1 and Q(1) = 0, then Points (e1)-(e6) of Proposition

9 still hold. The proof of these points is exactly the same as in Appendix A.13; in particular,

we still have R(1) ̸= 0 in this proof because Q(z) and R(z) have no common root on C.

A.15 Proof of Proposition 11

Under Rule (5) with ϕ ̸= 0, we have P (z) = zmax(0,h−m)[Q(z) + ϕR(z)zm−h], as follows from

Lemma 1. For any j ∈ {1, ..., J}, under the rule it = ϕjEt{vj,t+hj
} with ϕj ̸= 0, we similarly
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have P (z) = zmax(0,hj−mj)[Q(z) + ϕjRj(z)z
mj−hj ].

Under Rule (7) with ϕ = 0, therefore, there exists k1 ∈ Z such that P (z) = zk1 [Q(z) +∑J
j=1 ϕjRj(z)z

mj−hj ]. As a reciprocal polynomial, P (z) is such that P (0) ̸= 0; moreover,

we have Q(0) ̸= 0 and ∀j ∈ {1, ..., J}, Rj(0) ̸= 0; as a consequence, we get k1 = g :=

max[0,maxj∈{1,...,J}(hj − mj)], and thus P (z) = Q̃(z) := zg[Q(z) +
∑J

j=1 ϕjRj(z)z
mj−hj ]. In

addition, the same argument as the one used at the end of Appendix A.6 implies that the number

of non-predetermined variables, ν, is equal to δ̃ := δ + g.

Under Rule (7) with ϕ ̸= 0, similarly, there exists k2 ∈ Z such that P (z) = zk2 [Q(z) +∑J
j=1 ϕjRj(z)z

mj−hj + ϕR(z)zm−h]. Again, as a reciprocal polynomial, P (z) is such that

P (0) ̸= 0; moreover, we have Q(0) ̸= 0, ∀j ∈ {1, ..., J}, Rj(0) ̸= 0, and R(0) ̸= 0; as a

consequence, we get k2 = max[0,maxj∈{1,...,J}(hj − mj), h − m] = max(g, h − m), and thus

P (z) = Q̃(z)zmax(0,h−m̃) + ϕR(z)zmax(0,m̃−h), where m̃ := m + g. In addition, the same argu-

ment as the one used at the end of Appendix A.6 implies that the number of non-predetermined

variables, ν, is equal to δ̃ +max(0, h− m̃).

Therefore, Lemma 1 still holds for Rule (7) instead of Rule (5), if δ, m, and Q(z) are respectively

replaced by δ̃, m̃, and Q̃(z) in this lemma. As a consequence, Propositions 5-10 still hold for

Rule (7) instead of Rule (5), if δ, m, and Q(z) are respectively replaced by δ̃, m̃, and Q̃(z) in

these propositions.

Now suppose that the system composed of Model (4) and Rule (5) is regular (as stated in the

proposition), i.e. that qC = rC = 0. Since qC = 0, we have ∀j ∈ {1, ..., J}, ϕ
j
> 0. Suppose

further that
∑J

j=1 |ϕj | /ϕj
< 1 (as also stated in the proposition). Let q̃C := #{z ∈ C|Q̃(z) = 0}

denote the number of roots of Q̃(z) on C (counting multiplicity). For any z ∈ C, we have

Q̃(z) = zgQ(z){1 +
∑J

j=1 ϕj [Rj(z)/Q(z)]zmj−hj} with zg ̸= 0, Q(z) ̸= 0, and∣∣∣∣1 +∑J

j=1
ϕj

Rj(z)

Q(z)
zmj−hj

∣∣∣∣ ≥ 1−
∣∣∣∣∑J

j=1
ϕj

Rj(z)

Q(z)
zmj−hj

∣∣∣∣
≥ 1−

∑J

j=1
|ϕj |

∣∣∣∣Rj(z)

Q(z)

∣∣∣∣ ≥ 1−
∑J

j=1

|ϕj |
ϕ
j

> 0.

So, we get q̃C = 0. Since q̃C = rC = 0, the system composed of Model (4) and Rule (7) is regular.

Moreover, let q̃ := #{z ∈ C|Q̃(z) = 0, |z| < 1} denote the number of roots of Q̃(z) inside C
(counting multiplicity). To determine q̃, I apply Rouché's theorem to J = C, Pb(z) = zgQ(z),

and Ps(z) = zg
∑J

j=1 ϕjRj(z)z
mj−hj . For any z ∈ C, we have

|zgQ(z)| = |Q(z)| > |Q(z)|
∑J

j=1

|ϕj |
ϕ
j

≥ |Q(z)|
∑J

j=1
|ϕj |

∣∣∣∣Rj(z)

Q(z)

∣∣∣∣
=
∑J

j=1

∣∣∣ϕjRj(z)z
mj−hj

∣∣∣ ≥ ∣∣∣∣∑J

j=1
ϕjRj(z)z

mj−hj

∣∣∣∣ = ∣∣∣∣zg∑J

j=1
ϕjRj(z)z

mj−hj

∣∣∣∣ .
So, Q̃(z) has the same number of roots inside C as zgQ(z): q̃ = q + g. As a consequence,
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q̃ − δ̃ = q − δ, and the determinacy status under Rule (7) with ϕ = 0 is the same as under Rule

(5) with ϕ = 0.

Finally, let ϕ := minz∈C |Q(z)/R(z)| and ϕ̄ := maxz∈C |Q(z)/R(z)| denote the thresholds for ϕ
under Rule (5), and ϕ̃ := minz∈C

∣∣∣Q̃(z)/R(z)
∣∣∣ and ˜̄ϕ := maxz∈C

∣∣∣Q̃(z)/R(z)
∣∣∣ the thresholds for

ϕ under Rule (7). We have

ϕ̃ = min
z∈C

∣∣∣∣Q(z)

R(z)

[
1 +

∑J

j=1
ϕj

Rj(z)

Q(z)
zmj−hj

]∣∣∣∣ ≥ min
z∈C

∣∣∣∣Q(z)

R(z)

∣∣∣∣min
z∈C

∣∣∣∣1 +∑J

j=1
ϕj

Rj(z)

Q(z)
zmj−hj

∣∣∣∣
≥ ϕmin

z∈C

[
1−

∑J

j=1
|ϕj |

∣∣∣∣Rj(z)

Q(z)

∣∣∣∣] ≥ ϕ

[
1−

∑J

j=1
|ϕj |max

z∈C

∣∣∣∣Rj(z)

Q(z)

∣∣∣∣] = ϕ

(
1−

∑J

j=1

|ϕj |
ϕ
j

)

and

˜̄ϕ = max
z∈C

∣∣∣∣Q(z)

R(z)

[
1 +

∑J

j=1
ϕj

Rj(z)

Q(z)
zmj−hj

]∣∣∣∣ ≤ max
z∈C

∣∣∣∣Q(z)

R(z)

∣∣∣∣max
z∈C

∣∣∣∣1 +∑J

j=1
ϕj

Rj(z)

Q(z)
zmj−hj

∣∣∣∣
≤ ϕ̄max

z∈C

[
1 +

∑J

j=1
|ϕj |

∣∣∣∣Rj(z)

Q(z)

∣∣∣∣] ≤ ϕ̄

[
1 +

∑J

j=1
|ϕj |max

z∈C

∣∣∣∣Rj(z)

Q(z)

∣∣∣∣] = ϕ̄

(
1 +

∑J

j=1

|ϕj |
ϕ
j

)
.

A.16 Proof of Proposition 12

Under Rule (5) with ϕ ̸= 0, as stated in Lemma 1, we have ν = δ + max(0, h − m) and

P (z) = Q(z)zmax(0,h−m) + ϕR(z)zmax(0,m−h). Under Rule (8) with ϕ ̸= 0, the number of non-

predetermined variables is still ν = δ +max(0, h−m), since the new terms in the rule are past

(as opposed to expected future) values of the policy instrument. Moreover, the characteristic

polynomial of the dynamic system is still the same as the characteristic polynomial of the

corresponding perfect-foresight system, but the latter system is now[
A(L) L−γB(L)

−ϕL−hV(L) ρ(L)

] [
Xt

it

]
= 0.

Except possibly for a zero-measure set of values of ϕ, I can use the same standard result in time-

series analysis as in Appendix A.6. I get that there exists k ∈ Z such that P (z), the reciprocal

polynomial of the characteristic polynomial, is

P (z) = zk det

[
A(z) z−γB(z)

−ϕz−hV(z) ρ(z)

]
.

Using the Laplace expansion and the notations introduced in the main text, I rewrite P (z)

as P (z) = zk{det[A(z)]ρ(z) − ϕz−γ−hW (z)} = zk[Q(z)ρ(z) + ϕzm−hR(z)]. As a reciprocal

polynomial, P (z) is such that P (0) ̸= 0; moreover, we have Q(0) ̸= 0, ρ(0) ̸= 0, and R(0) ̸=
0; as a consequence, we get k = max(0, h − m), and thus P (z) = Q(z)ρ(z)zmax(0,h−m) +

ϕR(z)zmax(0,m−h). So, Lemma 1 still holds for Rule (8) instead of Rule (5) and for ϕ ̸= 0, if

Q(z) is replaced by Q(z)ρ(z) in this lemma. As a consequence, Propositions 5-10 still hold for

Rule (8) instead of Rule (5) and for ϕ ̸= 0, if Q(z) is replaced by Q(z)ρ(z) in these propositions.
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